Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer’s disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.
SorCS1 and SorL1/SorLA/LR11 belong to the sortilin family of vacuolar protein sorting-10 (Vps10) domain-containing proteins. Both are genetically associated with Alzheimer's disease (AD), and SORL1 expression is decreased in the brains of patients suffering from AD. SORCS1 is also genetically associated with types 1 and 2 diabetes mellitus (T1DM, T2DM). We have undertaken a study of the possible role(s) for SorCS1 in metabolism of the Alzheimer's amyloid- peptide (A) and the A precursor protein (APP), to test the hypothesis that Sorcs1 deficiency might be a common genetic risk factor underlying the predisposition to AD that is associated with T2DM. Overexpression of SorCS1c-myc in cultured cells caused a reduction ( p ϭ 0.002) in A generation. Conversely, endogenous murine A 40 and A 42 levels were increased (A 40 , p ϭ 0.044; A 42 ,pϭ0.007)inthebrainsoffemaleSorcs1hypomorphicmice,possiblyparallelingthesexualdimorphismthatischaracteristicofthegenetic associations of SORCS1 with AD and DM. Since SorL1 directly interacts with Vps35 to modulate APP metabolism, we investigated the possibility that SorCS1c-myc interacts with APP, SorL1, and/or Vps35. We readily recovered SorCS1:APP, SorCS1:SorL1, and SorCS1:Vps35 complexes from nontransgenic mouse brain. Notably, total Vps35 protein levels were decreased by 49% ( p ϭ 0.009) and total SorL1 protein levels were decreased by 29% ( p ϭ 0.003) in the brains of female Sorcs1 hypomorphic mice. From these data, we propose that dysfunction of SorCS1 may contribute to both the APP/A disturbance underlying AD and the insulin/glucose disturbance underlying DM.
Objectives
Recent evidence suggests that high molecular weight soluble oligomeric Aβ (oAβ) assemblies (also known as Aβ-derived diffusible ligands, or ADDLs) may represent a primary neurotoxic basis for cognitive failure in AD. To date, in vivo studies of oAβ/ADDLs have involved injection of assemblies purified from the cerebrospinal fluid (CSF) of human subjects with Alzheimer’s disease or from the conditioned media of Aβ-secreting cells into experimental animals. We sought to study the bioactivities of endogenously formed oAβ/ADDLs generated in situ from the physiological processing of human APP transgenes.
Methods
We produced and histologically characterized single transgenic mice overexpressing APPE693Q or APPE693Q X PS1ΔE9 bigenic mice. APPE693Q mice were studied in the Morris water maze (MWM) task at 6 and 12 months of age. Following the second MWM evaluation, mice were sacrificed, and brains were assayed for Aβtotal, Aβ40, Aβ42, and oAβ/ADDL by ELISA and were also histologically examined. Based on results from the oAβ/ADDL ELISA, we assigned individual APPE693Q mice to either an “undetectable oAβ/ADDLs group” or a “readily detectable oAβ/ADDLs group”. A days-to-criterion (DTC) analysis was used to determine delays in acquisition of the MWM task.
Results
Both single transgenic and bigenic mice developed intraneuronal accumulation of APP/Aβ, though only Dutch APPE693Q X PS1Δ9 bigenic mice developed amyloid plaques. The APPE693Q mice did not develop amyloid plaques at any age studied, up to 30 months. APPE693Q mice were tested for spatial learning and memory, and only 12-month old APPE693Q mice with readily detectable oAβ/ADDLs displayed a significant delay in acquisition of the MWM task when compared to NTg littermates.
Interpretation
These data suggest that cerebral oAβ/ADDL assemblies generated in brain in situ from human APP transgenes may be associated with cognitive impairment. We propose that a DTC analysis may be a sensitive method for assessing the cognitive impact in mice of endogenously generated oligomeric human Aβ assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.