A six‐year climatology of radiation fog has been compiled at two sites: the Research Centre for the Lower Atmosphere (CIBA, Spain) and the Cabauw Experimental Site for Atmospheric Research (CESAR, The Netherlands). These sites are contrasted in terms of geographical situation, climate zone, altitude, humidity and soil water availability. Therefore, several climatological differences in fog abundance, onset, dissipation and duration have been quantified between the two sites. The more humid site (CESAR) is characterised by relatively short radiation fog events distributed throughout the year. However, radiation fog at the drier site (CIBA) is more persistent and appears during late autumn/winter months. In general, its formation requires more time after sunset (∼2 h more), since further cooling is required to reach saturation. The forecast of these fog events has been evaluated through two different approaches. First, we extend the statistical method presented by Menut et al. (2014) (M14). This method uses statistics to define threshold values on key variables for fog formation (pre‐fog) and verifies its predictability using observations and numerical model output. We present some of the most appropriate threshold values for the forecasting of pre‐fog periods at both sites, which differ from those presented in M14 and depend on the optimisation of the hit rate or the false‐alarm rate. Additionally, we also extend M14 by suggesting other variables as potential predictors for fog formation (friction velocity and visibility tendency). Finally, we focus on fog simulation by the Weather Research and Forecasting (WRF) model in terms of liquid water content. The WRF model was able to simulate radiation fog when configured with sophisticated physical options and high resolution. However it failed in simulating the onset, dissipation and the vertical extent of fog (which was overestimated). The model results were extremely sensitive to the spin‐up time.
Fog-top height (fog thickness) is very useful information for aircraft manoeuvres, data assimilation/validation of Numerical Weather Prediction models or nowcasting of fog dissipation. This variable is usually difficult to determine, since the fog-layer top cannot be observed from the surface. In some cases, satellite data, ground remote-sensing instruments or atmospheric soundings are used to provide approximations of fog-top height. These instruments are expensive and their data not always available. In this work, two different methods for the estimation of fog-top height from field measurements are evaluated from the statistical analysis of several radiation-fog events at two research facilities. Firstly, surface friction velocity and buoyancy flux are here presented as potential indicators of fog thickness, since a linear correlation between fog thickness and surface turbulence is found at both sites. An operational application of this method can provide a continuous estimation of fog-top height with the deployment of a unique sonic anemometer at surface. Secondly, the fog-top height estimation based on the turbulent homogenisation within well-mixed fog (an adiabatic temperature profile) is evaluated. The latter method provides a high percentage of correctly-estimated fog-top heights for well-mixed radiation fog, considering the temperature difference between different levels of the fog. However, it is not valid for shallow fog (∼ less than 50 m depth), since in this case, the weaker turbulence within the fog is not able to erode the surface-based temperature inversion and to homogenise the fog layer. 1 tem (ILS). Most airports have regulatory meteorological 2 instrumentation composed by surface visibilimeters, a 3 ceilometer (measuring cloud base and cloud cover) and 4 standard meteorological instrumentation, but all these 5 data are not enough to provide information about fog-6 top height. 7 Despite the numerous potential applications of this 8 variable, its numerical value is not always clear. Many 9 studies cannot provide information about observed fog-10 top height due to the lack of measurements in the ver-11 tical. In many cases, temperature and humidity data 12 from atmospheric soundings are used to estimate fog 13 thickness (e.g., Koračin et al., 2001; Liu et al., 2011; 14 Boers et al., 2013; Bari et al., 2015). However, these 15 soundings are not always available, or their temporal 16 frequency is not sufficient to cover the whole fog cy-17 cle. In other cases, remote sensing instruments are used 18 to estimate the fog top. Dabas et al. (2012) studied the 19 ability of using reflectivity measurements from sodar to 20 estimate fog-top height, while Boers et al. (2013) de-21 rived visibility from radar reflectivity for a case study of 22 radiation fog. Ceilometers detect cloud-base height of 23 low clouds (e.g., Dupont et al., 2012), but they are not 24 useful to provide information about fog-top height. All 25 these instruments are usually expensive and sometimes 26 their vertical resolution is not a...
We investigated sharp disruptions of local turbulence and scalar transport due to the arrival of sea-breeze fronts (SBFs). To this end, we employed a comprehensive 10-year observational database from the Cabauw Experimental Site for Atmospheric Research (CESAR, the Netherlands). Sea-breeze (SB) days were selected using a five-filter algorithm, which accounts for large-scale conditions and a clear mesoscale-frontal signal associated with the land-sea contrast. Among those days (102 in all, 8.3%), based on the value of the sensible-heat flux at the onset of SB, we identified three atmospheric boundary-layer (ABL) regimes: convective, transition and stable. In the convective regime, the thermally driven convective boundary layer is only slightly altered by a small enhancement of the shear when the SBF arrives. Regarding the transition regime, we found that the ABL afternoon transition is accelerated. This was quantified by estimating the contributions of shear and buoyancy to the turbulent kinetic energy. Other relevant disruptions are the sharp reduction in ABL depth (∼250 m/hr) and the sudden increase in average wind speed (> 2 m/s). In the stable regime, the arrival of the SB leads to disturbances in the wind profile at the surface layer. We observed a deviation of more than 1 m/s in the observed surface-layer wind profile compared with the profile calculated using Monin-Obukhov Similarity Theory (MOST). Our findings furthermore reveal the determinant role of the SB direction in the transport of water vapour, CO 2 and 222 Rn. The return of continental air masses driven by the SB circulation generates sharp CO 2 increases (up to 14 ppm in half an hour) in a few SB events. We suggest that the variability in 222 Rn evolution may also be influenced by other non-local processes such as the large-scale footprint from more remote sources.
Most of the effects caused by fog are negative for humans. Yet, numerical weather prediction (NWP) models still have problems to simulate fog properly, especially in operational forecasts. In the case of radiation fog, this is partially caused by the large sensitivity to many aspects that contribute to its formation, evolution and dissipation, such as the synoptic and local conditions, the near-surface turbulence, the aerosol and droplet microphysics, or the surface characteristics, among others. This work focuses on an interesting 8-day period with several alternating radiation and cloud-base lowering (CBL) fog events observed at the Research Centre for the Lower Atmosphere (CIBA) in the Spanish Northern Plateau. The site was appropriately instrumented to characterize fog from the surface up to the height of 100 m. On the one hand, radiation fog events are associated with strong surface cooling leading to high stability close to the surface and low values of turbulence, giving rise to shallow fog. The evolution of this type of fog is markedly sensitive to the dynamical conditions close to the surface (i.e., wind speed and turbulence). On the other hand, CBL fog presents deeper thickness associated with higher values of turbulence and less stability. Subsequently, we evaluated the fog-forecasting skill of two mesoscale models (WRF and HARMONIE) configured as similar as possible. Both models present more difficulties simulating radiation fog events than CBL ones. However, the duration and vertical extension of the CBL fog events is normally overestimated. This extended-fog avoids the surface radiative cooling needed to simulate radiation fog events formed the following nights. Therefore, these periods with alternating CBL and radiation fog are especially challenging for NWP models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.