The Pacific Northwest National Laboratory (PNNL) is evaluating the performance of adsorption materials to extract uranium from natural seawater. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time using flow-through columns and a recirculating flume to determine adsorbent capacity and adsorption kinetics. The amidoxime-based polymer adsorbent AF1, produced by Oak Ridge National Laboratory (ORNL), had a 56-day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material, a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material, and a half-saturation time of 23 ± 2 days. The ORNL AF1 adsorbent has a very high affinity for uranium, as evidenced by a 56-day distribution coefficient between adsorbent and solution of log KD,56day = 6.08. Calcium and magnesium account for a majority of the cations adsorbed by the ORNL amidoxime-based adsorbents (61% by mass and 74% by molar percent), uranium is the fourth most abundant element adsorbed by mass and seventh most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced adsorption capacities 15% and 55% higher than those observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. Hydrodynamic modeling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when farm densities are <1800 braids/km2. A decrease in uranium adsorption capacity of up to 30% was observed after 42 days of exposure because of biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. No toxicity was observed with flow-through column effluents of any absorbent materials tested to date. Toxicity could be induced with some non-amidoxime based absorbents only when the ratio of solid absorbent to test media was increased to part per thousand levels. Thermodynamic modeling of the seawater−amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V reveal that when binding sites are limited (1 × 10–8 binding sites/kg seawater), vanadium heavily outcompetes other ions for the amidoxime sites. In contrast, when binding sites are abundant, Mg and Ca dominate the total percentage of metals bound to the sorbent.
Extraction of uranium (U) from seawater for use as a nuclear fuel is a significant challenge due to the low concentration of U in seawater (∼3.3 ppb) and difficulties to selectively extract U from the background of major and trace elements in seawater. The Pacific Northwest National Laboratory (PNNL)’s Marine Sciences Laboratory (MSL) has been serving as a marine test site for determining performance characteristics (adsorption capacity, adsorption kinetics, and selectivity) of novel amidoxime-based polymeric adsorbents developed at Oak Ridge National Laboratory (ORNL) under natural seawater exposure conditions. This manuscript describes the performance of three formulations (38H, AF1, AI8) of amidoxime-based polymeric adsorbents produced at ORNL in MSL’s ambient seawater testing facility. The adsorbents were produced in two forms, fibrous material (40–100 mg samples) and braided material (5–10 g samples), and exposed to natural seawater using flow-through columns and recirculating flumes. All three formulations demonstrated high 56 day uranium adsorption capacity (>3 g U/kg adsorbent). The AF1 formulation had the best uranium adsorption performance, with a 56 day capacity of 3.9 g U/kg adsorbent, a saturation capacity of 5.4 g U/kg adsorbent, and ∼25 days half-saturation time. The two exposure methods, flow-through columns and flumes, were demonstrated to produce similar performance results, providing confidence that the test methods were reliable, that scaling up from 10’s of mg quantities of exposure in flow-through columns to gram quantities in flumes produced similar results, and confirm that the manufacturing process produces a homogeneous adsorbent. Adsorption kinetics appear to be element specific, with half-saturation times ranging from minutes for the major cations in seawater, to 8–10 weeks for V and Fe. Reducing the exposure time provides a potential pathway to improve the adsorption capacity of U by reducing the V/U ratio on the adsorbent.
The Marine Science Laboratory at the Pacific Northwest National Laboratory evaluated the impact of biofouling on the performance or uranium adsorbents. A surface-modified polyethylene adsorbent fiber provided by Oak Ridge National Laboratory, AF adsorbent, was tested in either the presence or absence of light to simulate deployment in shallow or deep marine environments. Samples of the adsorbent fiber were exposed to seawater as loose fibers packed with glass beads in columns and as >10-cm-long braids of fiber placed in a flume that provided a continuous flow representative of natural ocean currents. Exposure tests (42 days) in column and flume settings showed that biofouling resulted in decreased uranium uptake by the adsorbent fiber. Uranium uptake was reduced by up to 30%, in the presence of simulated sunlight, which also increased biomass accumulation and altered the microbial community composition on the fibers. These results suggest that deployment below the photic zone would mitigate the effects of biofouling, resulting in greater yields of uranium extracted from seawater.
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2 CO 3 −H 2 O 2 and hydrochloric acid elution methods can remove ∼95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na 2 CO 3 −H 2 O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium(V) and amidoxime is also discussed based on our 51 V NMR data.
Recent advances in the development of amidoxime‐based adsorbents have made it highly promising for seawater uranium extraction. However, there is a great need to understand the influence of temperature on the uranium sequestration performance of the adsorbents in natural seawater. Here the apparent enthalpy and entropy of the sorption of uranium (VI) and vanadium (V) with amidoxime‐based adsorbents were determined in natural seawater tests at 8, 20, and 31 °C that cover a broad range of ambient seawater temperature. The sorption of U was highly endothermic, producing apparent enthalpies of 57 ± 6.0 and 59 ± 11 kJ mol−1 and apparent entropies of 314 ± 21 and 320 ± 36 J K−1 mol−1, respectively, for two adsorbent formulations. In contrast, the sorption of V showed a much smaller temperature sensitivity, producing apparent enthalpies of 6.1 ± 5.9 and −11 ± 5.7 kJ mol−1 and apparent entropies of 164 ± 20 and 103 ± 19 J K−1 mol−1, respectively. This new thermodynamic information suggests that amidoxime‐based adsorbents will deliver significantly increased U adsorption capacities and improved selectivity in warmer waters. A separate field study of seawater uranium adsorption conducted in a warm seawater site (Miami, FL, USA) confirm the observed strong temperature effect on seawater uranium mining. This strong temperature dependence demonstrates that the warmer the seawater where the amidoxime‐based adsorbents are deployed the greater the yield for seawater uranium extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.