Although rare within the context of 30 000 species of extant fishes, scale-feeding as an ecological strategy has evolved repeatedly across the teleost tree of life. Scale-feeding (lepidophagous) fishes are diverse in terms of their ecology, behaviour, and specialized morphologies for grazing on scales and mucus of sympatric species. Despite this diversity, the underlying ontogenetic changes in functional and biomechanical properties of associated feeding morphologies in lepidophagous fishes are less understood. We examined the ontogeny of feeding mechanics in two evolutionary lineages of scale-feeding fishes: Roeboides, a characin, and Catoprion, a piranha. We compare these two scale-feeding taxa with their nearest, non-lepidophagous taxa to identify traits held in common among scale-feeding fishes. We use a combination of micro-computed tomography scanning and iodine staining to measure biomechanical predictors of feeding behaviour such as tooth shape, jaw lever mechanics and jaw musculature. We recover a stark contrast between the feeding morphology of scale-feeding and non-scale-feeding taxa, with lepidophagous fishes displaying some paedomorphic characters through to adulthood. Few traits are shared between lepidophagous characins and piranhas, except for their highly-modified, stout dentition. Given such variability in development, morphology and behaviour, ecological diversity within lepidophagous fishes has been underestimated.
Cleaning symbioses are mutualistic relationships where cleaners remove and consume ectoparasites from their clients. Cleaning behavior is rare in fishes and is a highly specialized feeding strategy only observed in around 200 species. Cleaner fishes vary in their degree of specialization, ranging from species that clean as juveniles or facultatively as adults, to nearly obligate or dedicated cleaners. Here, we investigate whether these different levels of trophic specialization correspond with similar changes in feeding morphology. Specifically, we model the evolution of cleaning behavior across the family Gobiidae, which contains the most speciose radiation of dedicated and facultative cleaner fishes. We compared the cranial morphology and dentition of cleaners and non‐cleaners across the phylogeny of cleaning gobies and found that facultative cleaners independently evolved four times and have converged on an intermediate morphology relative to that of dedicated cleaners and non‐cleaning generalists. This is consistent with their more flexible feeding habits. Cleaner gobies also possess a distinct tooth morphology, which suggests they are adapted for scraping parasites off their clients and show little similarity to other cleaner clades. We propose that evolutionary history and pre‐adaptation underlie the morphological and ecological diversification of cleaner fishes.
Uncovering convergent and divergent patterns of diversification is a major goal of evolutionary biology. On four Greater Antillean islands, Anolis lizards have convergently evolved sets of species with similar ecologies and morphologies (ecomorphs). However, it is unclear whether closely related anoles from Central and South America exhibit similar patterns of diversification. We generated an extensive morphological data set to test whether mainland Draconura-clade anoles are assignable to the Caribbean ecomorphs. Based on a new classification framework that accounts for different degrees of morphological support, we found morphological evidence for mainland representatives of all six Caribbean ecomorphs and evidence that many ecomorphs have also evolved repeatedly on the mainland. We also found strong evidence that ground-dwelling anoles from both the Caribbean and the mainland constitute a new and distinct ecomorph class. Beyond the ecomorph concept, we show that the island and mainland anole faunas exhibit exceptional morphological convergence, suggesting that they are more similar than previously understood. However, the island and mainland radiations are not identical, indicating that regional differences and historical contingencies can lead to replicate yet variable radiations. More broadly, our findings suggest that replicated radiations occur beyond island settings more often than previously recognized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.