Phosphonates have garnered considerable attention for years owing to both their singular biological properties and their synthetic potential. State‐of‐the‐art methods for the preparation of mixed phosphonates, phosphonamidates, phosphonothioates, and phosphinates rely on harsh and poorly selective reaction conditions. We report herein a mild method for the modular preparation of phosphonylated derivatives, several of which exhibit interesting biological activities, that is based on chemoselective activation with triflic anhydride. This procedure enables flexible and even iterative substitution with a broad range of O, S, N, and C nucleophiles.
Pharmacophore models are widely used as efficient virtual screening (VS) filters for the target-directed enrichment of large compound libraries. However, the generation of pharmacophore models that have the power to discriminate between active and inactive molecules traditionally requires structural information about ligand−target complexes or at the very least knowledge of one active ligand. The fact that the discovery of the first known active ligand of a newly investigated target represents a major hurdle at the beginning of every drug discovery project underscores the need for methods that are able to derive high-quality pharmacophore models even without the prior knowledge of any active ligand structures. In this work, we introduce a novel workflow, called apo2ph4, that enables the rapid derivation of pharmacophore models solely from the three-dimensional structure of the target receptor. The utility of this workflow is demonstrated retrospectively for the generation of a pharmacophore model for the M2 muscarinic acetylcholine receptor. Furthermore, in order to show the general applicability of apo2ph4, the workflow was employed for all 15 targets of the recently published LIT-PCBA dataset. Pharmacophore-based VS runs using the apo2ph4-derived models achieved a significant enrichment of actives for 13 targets. In the last presented example, a pharmacophore model derived from the etomidate site of the α1β2γ2 GABA A receptor was used in VS campaigns. Subsequent in vitro testing of selected hits revealed that 19 out of 20 (95%) tested compounds were able to significantly enhance GABA currents, which impressively demonstrates the applicability of apo2ph4 for real-world drug design projects.
Phosphonate haben wegen ihrer einzigartigen biologischen Aktivitäten und ihres Synthesepotentials seit Jahren beachtliche Aufmerksamkeit erhalten. Modernste Methoden fürd ie Herstellung von gemischten Phosphonaten, Phosphonamidaten, Phosphonothioaten und Phosphinaten beruhen auf harschen und wenig selektiven Reaktionsbedingungen. Hier wird eine milde Methode zur modularen Herstellung von phosphorylierten Derivaten, viele davon mit interessanten biologischen Aktivitäten, über chemoselektive Aktivierung mittels Trifluormethansulfonsäure-Anhydrid beschrieben. Diese Vorgehensweise ermçglicht eine flexible und sogar iterative Substitution mit einem breiten Spektrum an O-, S-, Nund C-Nukleophilen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.