Graphite oxide is an inorganic multilayer system that preserves the layered structure of graphite but not the conjugated bond structure. In the past few years, detailed studies of the static structure of graphite oxide were carried out. This was mainly done by NMR investigations and led to a new structural model of graphite oxide. The layer distance of graphite oxide increases with increasing humidity level, giving rise to different spacings of the carbon layers in the range from 6 to 12 A. As a consequence, different types of motions of water and functional groups appear. Information about the mobility of the water molecules is not yet complete but is crucial for the understanding of the structure of the carbon layers as well as the intercalation process. In this paper, the hydration- and temperature-dependent dynamic behavior of graphite oxide will be investigated by quasielastic neutron scattering using the time-of-flight spectrometer NEAT at the Hahn-Meitner-Institut Berlin. The character of the embedded water does not change over a wide range of hydration levels. Especially the interlayer water remains tightly bound and does not show any translational motion. In samples with excess water, however, the water is also distributed in noninterlayer voids, leading to the observation of additional motions of bulklike or confined water. The dynamic behavior of hydrated graphite oxide can be described by a consistent model that combines two two-site jump motions for the motions of the water molecules and the motions of OH groups.
Introduction 4546 2. General Information on the Structure of Photosynthetic Complexes and StructureÀFunction Relationships 4548 2.1. Photosystem I (PSI) and Photosystem II (PSII) 4548 2.2. Basic Aspects of Bacterial Photosynthesis 4549 3. Interpigment Interactions, Excitation Energy Transfer (EET), and Charge Separation (CS) Rates-General Considerations 4550 4. Fundamentals of Spectral Hole-Burning (SHB) and Fluorescence Line-Narrowing Spectroscopy (FLNS) and Single Photosynthetic Complex Spectroscopy (SPCS) 4552 4.1. Zero-Phonon Lines, Homogeneous and Inhomogeneous Broadening 4553 4.1.1. ZPLs and Phonon Sidebands (PSBs) 4554 4.1.2. ElectronÀPhonon Coupling and Homogeneous Line Shapes 4555 4.2. Nonphotochemical, Photochemical, and Transient SHB Spectroscopy 4557 4.3. Mechanism of Nonphotochemical Hole-Burning (NPHB) 4558 4.4. Kinetics of NPHB 4559 4.5. Zero-Phonon Action (ZPA) Spectroscopy: Site Distribution Function (SDF) 4560 4.6. Hole Shapes and FLN Line Shapes-Electron Phonon Coupling and ΔFLNS 4561 4.7. Ground and Excited State Vibrational Frequencies 4567 4.8. SHB in Excitonically Coupled Systems 4567 4.9. Basic Principles of SPCS 4568 4.10. Basic Principles of Two-Dimensional Electronic Spectroscopy (2D ES) 4569 5. Examples of Applications of NPHB, FLNS, SPCS, and 2D ES to Photosynthesis 4570 5.1. Light-Harvesting and EET in Antenna Complexes 4570 5.1.1. Peripheral Antenna Systems of Photosystem II (
Low-frequency compressional waves were observed in a suspension of strongly coupled 9.4 mm spheres in an rf Kr plasma. Both parts of the complex wave number were measured to determine the dispersion relation, which agreed with a theoretical model of damped dust acoustic waves, ignoring strong coupling, but not with a strongly coupled dust-lattice wave model. The results yield experimental values for the dust plasma frequency, charge, Debye length, and damping rate, and support the applicability of fluid-based dispersion relations to strongly coupled dusty plasmas, which has been a controversy. [S0031-9007(96)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.