Thermoelectric generation is an alternative to recover some of the wasted energy trough an exhaust of the internal combustion engines. This paper assesses the performance of a thermoelectric generator with 20 modules by implementing a waffle heat exchanger. Experimental results showed a variable range of power recovery from 57.87 W to 71.13 W for B10, B5, and Diesel. The highest energy conversion efficiency of the aforementioned thermoelectric device was of 3% with the highest load and the fastest rotational speed. Also, the recovery process reduced gaseous emissions such as CO, CO2, NO, NOX, and HC. Additionally, the smoke opacity per kWh is reduced at significant levels of operations such as 2.42% when using diesel, 2.65% when using B5 and 3% when using B10. However, when using biodiesel blends, NOx emissions were increased. Overall the biodiesel resulted in a higher power recovery performance versus the diesel.
This paper presents the application of a systematic methodology to obtain a semi-physical model of phenomenological base for a 2 MW internal combustion engine to generate electric power operating with natural gas, as a function of the average thermodynamic value normally measured in industrial applications. Specifically, the application of the methodology is focused on the cylinders, exhaust manifold, and turbocharger turbine sections. The proposed model was validated with actual operating data, obtaining an error rate not exceeding 5%, which allow a thermal characterization of the Jenbacher JMS 612 GS-N based on the model. A parametric analysis is conducted; considering the volumetric efficiency, the output electric power, the effective efficiency, the exhaust gas temperature, the turbine mass flow, the specific fuel consumption under the nominal operation conditions, which is 1.16 bar in the gas pressure, 65 °C in the cooling water temperature, 35 °C in the average ambient temperature, and 1500 rpm. The results of this model can be used to evaluate the thermodynamic performance parameters of waste heat recovery systems. On the other hand, new control strategies and the implementation of state observers for the detection and diagnosis of failures can be developed based on the proposed model.
The application of equilibrium thermodynamics in the study of thermal plant performance under real operating conditions is a constant challenge. In this paper, an analysis of a reservoir pressure piston working between two linear flow resistances is performed by considering the friction of the piston cylinder system on the walls. The proposed model is developed to obtain the optimum power output and speed of the piston in terms of first law efficiency. If the friction on the piston–cylinder assembly is neglected, the expressions obtained are consistent with those presented in the literature under laminar regime. It was also demonstrated that for both laminar and turbulent regimes with overall size constraints, the power delivered can be maximized by balancing the upstream and downstream flow resistances of the piston. This paper also evaluated the influence of the overall size constraints and flow regime on the performance of the piston cylinder. This analysis is equivalent to evaluate the irreversibilities in an endo-irreversible Carnot heat engine with heat loss resistance between the engine and its heat reservoirs. The proposed model introduced some modifications to the results obtained from the recent literature and led to important conclusions. Finally, the proposed model was applied to calculate the lost available work in a turbine operating at steady flow conditions with an ideal gas as working fluid.
A new methodology for predicting the real instantaneous in-cylinder volume in the combustion chamber of a reciprocating internal combustion engine is implemented. The mathematical model developed as part of this methodology, takes into consideration the deformations due to pressure and inertial forces, via a deformation constant adjusted through ANSYS®, using a high-precision CAD model of a SOKAN SK-MDF300 engine. The deformation constant was obtained from the CAD model using the computational tool ANSYS® and the pressure data was obtained from the engine running at three regimes: 1500, 2500, and 3500 rpm. The results were compared with previous models reported in the literature, showing that the deformation constant obtained has a smaller variation among cycles, which leads to a more precise value of the mechanical deformations. Furthermore, to have a more accurate model of the instantaneous volume variation, a factor taking into consideration the lubricant film behavior is introduced to calculate volumetric variation due to geometrical clearances. The influence of the introduced volumetric variation was evaluated through a process of combustion diagnosis, evidencing the improvement in the predictive capacity of thermodynamic modeling and, therefore, the correct prediction of heat release rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.