Abstract:The thermochemical processing of biomass is an alternative route for the manufacture of fuel-grade ethanol, in which the catalytic conversion of syngas to ethanol is a key step. The search for novel catalyst formulations, active sites and types of support is of current interest. In this work, the catalytic performance of an Rh/MCM-41 catalyst has been evaluated and compared with a typical Rh/SiO2 catalyst. They have been compared at identical reaction conditions (280 °C and 20 bar), at low syngas conversion (2.8%) and at same metal dispersion (H/Rh = 22%). Under these conditions, the catalysts showed different product selectivities. The differences have been attributed to the concentration of water vapor in the pores of Rh/MCM-41. The concentration of water vapor could promote the water-gas-shift-reaction generating some extra carbon dioxide and hydrogen, which in turn can induce side reactions and change the product selectivity. The extra hydrogen generated could facilitate the hydrogenation of a C2-oxygenated intermediate to ethanol, thus resulting in a higher ethanol selectivity over the Rh/MCM-41 catalyst as compared to the typical Rh/SiO2 catalyst; 24% and 8%, respectively. The catalysts have been characterized, before and after reaction, by N2-physisorption, X-ray photoelectron
OPEN ACCESSCatalysts 2015, 5 1738 spectroscopy, X-ray diffraction, H2-chemisorption, transmission electron microscopy and temperature programmed reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.