While feathers have been successfully validated for monitoring of internal concentrations of heavy metals and legacy persistent organic pollutants (POPs), less is known about their suitability for monitoring of emerging contaminants (ECs). Our study presents a broad investigation of both legacy POPs and ECs in non-destructive matrices from a bird of prey. Plasma and feathers were sampled in 2015 and 2016 from 70 whitetailed eagle (Haliaeetus albicilla) nestlings from two archipelagos in Norway. Preen oil was also sampled in 2016. Samples were analysed for POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorinated pesticides (OCPs)) and ECs (per- and polyfluoroalkyl substances (PFASs), dechlorane plus (DPs), phosphate and novel brominated flame retardants (PFRs and NBFRs)). A total of nine PCBs, three OCPs, one PBDE and one PFAS were detected in over 50% of the plasma and feather samples within each sampling year and location. Significant and positive correlations were found between plasma, feathers and preen oil concentrations of legacy POPs and confirm the findings of previous research on the usefulness of these matrices for non-destructive monitoring. In contrast, the suitability of feathers for ECs seems to be limited. Detection frequencies (DF) of PFASs were higher in plasma (mean DF: 78%) than in feathers (mean DF: 38%). Only perfluoroundecanoic acid could be quantified in over 50% of both plasma and feather samples, yet their correlation was poor and not significant. The detection frequencies of PFRs, NBFRs and DPs were very low in plasma (mean DF: 1-13%), compared to feathers (mean DF: 10-57%). This may suggest external atmospheric deposition, rapid internal biotransformation or excretion of these compounds. Accordingly, we suggest prioritising plasma for PFASs analyses, while the sources of PFRs, NBFRs and DPs in feathers and plasma need further investigation.
Background Capillary electrophoresis of plasma proteins has shown great potential as a complementary diagnostic tool for avian species. However, reference intervals for plasma proteins are sparse or lacking for several free-living avian species. The current study reports electrophoretic patterns and concentrations of plasma proteins determined for 70 free-living white-tailed eagle ( Haliaeetus albicilla ) nestlings from two locations in Norway (Steigen and Smøla) in order to establish reference values for this subpopulation using capillary electrophoresis. The nestlings were between 44 and 87 days of age, and the plasma protein concentrations were investigated for age, sex, year (2015 and 2016) and location differences. To our knowledge, this is the first report of reference intervals of plasma proteins analysed by capillary electrophoresis in free-living white-tailed eagle nestlings. Results The plasma protein concentrations (% of total protein, mean ± SE) were determined for prealbumin (13.7%, 4.34 ± 0.15 g/L), albumin (46.7%, 14.81 ± 0.24 g/L), α 1 -globulin (2.4%, 0.74 ± 0.03 g/L), α 2 -globulin (11.7%, 3.72 ± 0.06 g/L), β-globulin (15.9%, 5.06 ± 0.08 g/L) and γ-globulin (9.6%, 3.05 ± 0.09 g/L). Significant differences were found between the two locations for prealbumin, α 2 - and γ-globulins. No significant differences were found between the two sampling years or sexes, and no effect of age was found for any of the plasma proteins. However, prealbumin levels were several folds higher than previously reported from adults of closely related birds of prey species. There were no other studies on capillary electrophoresis of nestling plasma available for comparison. Conclusion Significant differences were found between sampling locations for prealbumin, α 2 - and γ-globulins, which may indicate differences in inflammatory or infectious status between nestlings at the two locations. Sampling year, sex or age had no significant effect on the plasma protein concentrations. These results provide novel data on plasma protein concentrations by capillary electrophoresis and may be useful for evaluation of health status in free-living white-tailed eagle nestlings. Electronic supplementary material The online version of this article (10.1186/s12917-019-2022-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.