Nitric oxide is involved in memory and motor learning. We investigated possible influences of exercise on spatial memory and NADPH-diaphorase (NADPH-d) histochemical activity in the hippocampus, striatum and cerebellum. Fifteen albino Swiss mice between the 22nd and 55th post-natal days were exercised in the following modalities: voluntary (V), acrobatic (A), acrobatic/voluntary (AV) and forced (F) and compared to inactive group (I). After the exercise period, all subjects were tested in the water maze for 3 days. Animal brains were processed for NADPH-d histochemistry. Densitometry of the neuropil of the hippocampus, striatum and cerebellum and morphometric analysis of NADPHd+ type I neurons of the striatum were done. Exercise groups presented higher levels of NADPH-d activity in the molecular and polymorphic layers of dentate gyrus and lacunosum molecular layer of CA1. The A group presented higher NADPH-d activity in the cerebellar granular layer than all other groups. Branching points and dendritic segment densities of NADPH-d type I neurons were higher in V, A and AV than in F and I groups. Exercise groups revealed best performances on water maze tests. Thus, different modalities of exercise increases in different proportions for the nitrergic activity in the hippocampus, striatum and cerebellum, and these changes seem to be beneficial to spatial memory.
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration, and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression.
We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits.
Nutritional imbalances were produced by varying litter size pups per dam: 3 (small), 6 (medium), and 12 (large). On the 21st day, 4 subjects of each litter, were sacrificed and the remaining were grouped, 2 per cage, with or without running wheels, with food and water ad libitum. Adult subjects were tested in water maze, their brains processed for NADPH-diaphorase histochemistry and quantified by densitometry. No differences were detected in water maze. At 21st day, S and L compared with M presented reduced NADPH-d in the stratum molecular of dentate gyrus (DG), stratum lacunosum of CA1 and in all CA3 layers but not in the striatum. On the 58th day, actvity remained low in S and L in CA3 and striatum and L in CA1 and DG. Voluntary exercise increased NADPH-d in DG, CA1, CA3, and striatum in S, and in the stratum lacunosum of CA1 and CA3 in L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.