Manuscrito recibido el 14 de junio de 2016. Aceptado, tras revisión, el 15 de septiembre de 2016. ResumenSe realizó una exploración inicial sobre medidas de adaptación implementadas frente a Eventos Hidrometeorológicos Extremos (EHE) en zonas rurales, extraídas de sitios seleccionados en Argentina, Brasil, Chile, Colombia y Ecuador; el primer desafío encontrado fue la definición de EHE; puesto que la misma cambia si se la enfoca desde el punto de vista meteorológico o hidrológico; además, no existe acuerdo en la definición de valores límites para caracterizar estos eventos dentro de la región; finalmente, en muchos de los sitios donde se realizó este estudio no existen registros lo suficientemente largos y confiables para poder cuantificar los EHE; en consecuencia se decidió utilizar una definición "empírica" de EHE, dejando que sean los actores sociales que vivieron la experiencia los que determinen cuando ocurrió un evento de esa naturaleza. A pesar de las diferencias en la vulnerabilidad y los impactos sobre los paisajes rurales de cada sitio, las evidencias sugieren que la gestión integrada de los paisajes a nivel comunitario permite a los productores agrícolas adoptar medidas de adaptación a su debido tiempo y preparar a las comunidades rurales para enfrentarse y responder ante la ocurrencia de EHE. Entre las lecciones aprendidas más importantes se identificaron: La demanda de una adecuada transferencia de información relacionada a EHE; la necesidad de promoción del capital social; la importancia de tener un Estado desempeñando un rol proactivo; la relevancia de tener una prensa que oriente y no escandalice; y la necesidad de contar con mecanismos óptimos para estimación de costos.Palabras claves: evento ENOS, cambio climático, adaptación.
It is widely accepted by the scientific community that the world has begun to warm as a result of human influence. The accumulation of greenhouse gases in the atmosphere, arising primarily from the combustion of carbon fossil fuels and agricultural activities, generates changes in the climate. Indeed various studies have assessed the potential impacts of climate change on human health (both negative and positive). The increased frequency and intensity of heat waves, the reduction in cold-related deaths, the increased floods and droughts, and the changes in the distribution of vector-borne diseases are among the most frequently studied effects. On the other hand, climate change differs from many other environmental health problems because of its gradual onset, widespread rather than localized effect, and the fact that the most important effects will probably be indirect. Some recent and important publications show that only the collaboration between the meteorological and the public health communities can help us to thoroughly study the link between climate and health, thus improving our ability to adapt to these future changes. The aim of this editorial is to give different perspectives on a widely discussed topic, which is still too complicated to be addressed to a satisfactory extent. Moreover, it is necessary to underline the importance of using new biometeorological indices (i.e. thermal indexes, etc.) for future projections, in order to reduce the impacts of negative outcomes, protecting the population through adaptation measures and public awareness.
It is well known that sudden variations of air temperature have the potential to cause severe impacts on human health. Therefore, it becomes necessary to provide information capable of quantifying the severity of the problem, considering that the continuous increase of temperature due to global warming and urban development will cause more intense effects in heavily populated areas. Due to its geographical location and local characteristics, Ecuador, a country located on the western coast of South America, is characterized by a high vulnerability to climatic extremes. The present research develops an evaluation of urban climate change effects through the analysis of extreme temperature indices using four meteorological stations situated in the city of Guayaquil (southwest Ecuador). Since the available data are not adequate for extreme temperature indices criteria, it was necessary to employ an infilling method for times series in an innovative way that can be applicable at the small scale. Thus, a cross‐correlation‐enhanced inverse distance weighting (CC‐IDW) method was proposed. The method entails a spatial interpolation based on data of urban stations situated outside of Guayaquil by taking into account cross‐correlation among times series at precise lags that leads to an improvement in the way of estimating the missing values. Subsequently, a homogeneity test, data quality control and the calculation of extreme temperature indices chosen from those proposed by the World Meteorological Organization (WMO) were implemented. The results show that there is a general tendency of warming with quite homogenous temperatures for all considered stations. However, it should be recognized that the climate pattern of this region is strongly modulated by the El Niño Southern Oscillation (ENSO) cycle. Only for two extreme indices: the highest maximum temperature (TXx) and the warm days (TX90p), are the resulting trend co‐efficients statistically significant. The study suggests a deteriorated climatic condition due to heat stress that warrants further study using the available database for the city of Guayaquil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.