Diets high in bioactive compounds, such as polyphenols, have been used to mitigate metabolic syndrome (MetS). Polyphenols are a large group of naturally occurring bioactive compounds, classified into two main classes: non-flavonoids and flavonoids. Flavonoids are distributed in foods, such as fruits, vegetables, tea, red wine, and cocoa. Studies have already demonstrated the benefits of flavonoids on the cardiovascular and nervous systems, as well as cancer cells. The present review summarizes the results of clinical studies that evaluated the effects of flavonoids on the components of the MetS and associated complications when offered as supplements over the long term. The results show that flavonoids can significantly modulate several metabolic parameters, such as lipid profile, blood pressure, and blood glucose. Only theaflavin and catechin were unable to affect metabolic parameters. Moreover, only body weight and body mass index were unaltered. Thus, the evidence presented in this systematic review offers bases in support of a flavonoid supplementation, held for at least 3 weeks, as a strategy to improve several metabolic parameters and, consequently, reduce the risk of diseases associated with MetS. This fact becomes stronger due to the rare side effects reported with flavonoids.
The Morelia-Capula zone depends entirely on groundwater for the supply of its more than 120000 inhabitants. The groundwater extraction has caused a decrease in the piezometric level estimated at more than 45 meters in a period of 21 years. Because of the importance of the aquifer system of the Morelia-Capula zone it is necessary to have a complete understating of the system, therefore, this study is carried out from the perspective of the Tothian flow systems. Three parameters are used to identify the groundwater dynamics, temperature, major ions, and depth (static level). Groundwater samples were analyzed in a total of 35 sites (29 wells and 6 springs), consisting of 26 intermediate, 8 local, and 1 regional flows. The local flow system is located in the upper strata of the aquifer system and can be seen within the shallow wells and springs. The intermediate flow system is located throughout the study area below the local flow system where most wells are extracting water from this system. The local and intermediate flow systems are localized in the terrigenous and volcanic units. The regional flow system is only in the volcanic unit that underlies the terrigenous unit. A few wells have come in contact with this system. A depletion trend shows that in the next few years this flow system will provide water to this zone. It was found that intensive extraction and the presence of geological faults favor the mixture of flows. Most of the water supply in the zone depends on the intermediate flow system. The static level in the zone descends 2.13 m/year. The flow direction of local and intermediate systems generally follows the topography of the zone, although there are local alterations due to the formation of depletion cones. Results indicate the need to implement strategies to avoid contaminating local flows and to reduce the water pressure derived from extraction toward the intermediate and regional systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.