The inversion method for generating non-uniform random variates has some advantages compared to other generation methods, since it monotonically transforms uniform random numbers into nonuniform random variates. Hence it is the method of choice in the simulation literature. However, except for some simple cases where the inverse of the cumulative distribution function is a simple function we need numerical methods. Often inversion by "brute force" is used, applying either very slow iterative methods or linear interpolation of the CDF and huge tables. But then the user has to accept unnecessarily large errors or excessive memory requirements, that slow down the algorithm. In this paper we demonstrate that with Hermite interpolation of the inverse CDF we can obtain very small error bounds close to machine precision. Using our adaptive interval splitting method this accuracy is reached with moderately sized tables that allow for a fast and simple generation procedure.
Abstract. Ring information is a large part of the structural topology used to identify and characterize molecular structures. It is hence of crucial importance to obtain this information for a variety of tasks in computational chemistry. Many different approaches for "ring perception", i.e., the extraction of cycles from a molecular graph, have been described. The chemistry literature on this topic, however, reports a surprisingly large number of incorrect statements about the properties of chemically relevant ring sets and, in particular, about the mutual relationships of different sets of cycles in a graph. In part these problems seem to have arisen from a sometimes rather idiosyncratic terminology for notions that are fairly standard in graph theory. In this contribution we translate the definitions of concepts such as the Smallest Set of Smallest Rings, Essential Set of Essential Rings, Extended Set of Smallest Rings, Set of Smallest Cycles at Edges, Set of Elementary Rings, K-rings, and β-rings into a more widely-used mathematical language. We then outline the basic properties of different cycle sets and provide numerous counterexamples to incorrect claims in the published literature. These counterexamples may have a serious practical impact because at least some of them are molecular graphs of well-known molecules. As a consequence, we propose a catalogue of desirable properties for chemically useful sets of rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.