Abstract:The mechanism of the photoisomerization of azobenzene has been studied by means of multiconfigurational ab initio calculations. Our results show that it is necessary to account for the dynamic electron correlation in the location of the critical points (CASPT2 optimizations) to obtain a correct description of the topography of the potential energy surfaces of the low-energy singlet excited states. Using this methodology, we have found that the state populated by the initial excitation is the S2 (ππ*) state, which decays very efficiently to the S1 (nπ*) state at a pedal-like non-rotated geometry. On the S1 state, relaxation leads to a rotated geometry where the system decays to the ground state, in which further relaxation can lead to either the trans or cis geometries. However the S1/S0 CI seam also extends to planar geometries, so this reaction path is also accessible for rotation-constrained systems. Our results explain the experimental observations satisfactorily.
Azo compounds are organic photochromic systems that have the possibility of switching between cis and trans isomers under irradiation. The different photochemical properties of these isomers make azo compounds into good light-triggered switches, and their significantly different geometries make them very interesting as components in molecular engines or mechanical switches. For instance, azo ligands are used in coordination complexes to trigger photoresponsive properties. The light-induced trans-to-cis isomerization of phenylazopyridine (PAPy) plays a fundamental role in the room-temperature switchable spin crossover of Ni-porphyrin derivatives. In this work, we present a computational study developed at the SA-CASSCF/CASPT2 level (State Averaged Complete Active Space Self Consistent Field/CAS second order Perturbation Theory) to elucidate the mechanism, up to now unknown, of the cis–trans photoisomerization of 3-PAPy. We have analyzed the possible reaction pathways along its lowest excited states, generated by excitation of one or two electrons from the lone pairs of the N atoms of the azo group (nazoπ*2 and nazo2π*2 states), from a π delocalized molecular orbital (ππ* state), or from the lone pair of the N atom of the pyridine moiety (npyπ* state). Our results show that the mechanism proceeds mainly along the rotation coordinate in both the nazoπ* and ππ* excited states, although the nazo2π*2 state can also be populated temporarily, while the npyπ* does not intervene in the reaction. For rotationally constrained systems, accessible paths to reach the cis minimum along planar geometries have also been located, again on the nazoπ* and ππ* potential energy surfaces, while the nazo2π*2 and npyπ* states are not involved in the reaction. The relative energies of the different paths differ from those found for azobenzene in a previous work, so our results predict some differences between the reactivities of both compounds.
Phenalenone (PN) derivatives are involved in plant defense strategies, producing molecular singlet oxygen in a photosensitization process. Many experimental and theoretical studies determined that PN can performe this process with a quantum yield close to 1. However, it has been observed that the efficiency of some of its derivatives is much lower. This is the case of 9-phenylphenalenone (9-PhPN). To elucidate the factors that determine the different photochemistry of PN and its derivate 9-PhPN, we developed a complete active space self-consistent field/multi-configurational second-order perturbation theory study where several deactivation paths through the lowest excited states were explored. We found that the characteristics of the low-lying excited states are similar for both PN and 9-PhPN in the areas near the geometry of excitation. Consequently, the first processes that take place immediately after absorption are possible in both systems, including the population of the triplet state responsible for oxygen sensitization. However, 9-PhPN can also undergo cyclization by a bond formation between the carbonyl oxygen and a carbon atom of the phenyl substituent. This process competes favorably with population of triplet states and is responsible for the decrease of the quantum yield of oxygen sensitization in 9-PhPN relative to PN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.