Hemagglutinin (HA) is the major antigen in influenza vaccines and glycosylation is known to influence its antigenicity. Embryonated hen eggs are traditionally used for influenza vaccine production, but vaccines produced in mammalian and insect cells were recently licensed. This raises the concern that vaccines produced with different cell systems might not be equivalent due to differences in their glycosylation patterns. Thus, we developed an analytical method to monitor vaccine glycosylation through a combination of nanoLC/MSE and quantitative MALDI-TOF MS permethylation profiling. We then used this method to examine glycosylation of HA’s from two different influenza H5N1 strains produced in five different platforms, including hen eggs, three different insect cell lines (High Five™, expresSF+® and glycoengineered expresSF+), and a human cell line (HEK293). Our results demonstrated that (1) sequon utilization is not necessarily equivalent in different cell types, (2) there are quantitative and qualitative differences in the overall N-glycosylation patterns and structures produced by different cell types, (3) ~20% of the N-glycans on the HAs produced by High Five™ cells are core α1,3-fucosylated structures, which may be allergenic in humans, and (4) our method can be used to monitor differences in glycosylation during the cellular glycoengineering stages of vaccine development.
Extensive preparation is underway to mitigate the next pandemic influenza outbreak. New vaccine technologies intended to supplant egg-based production methods are being developed, with recombinant hemagglutinin (rHA) as the most advanced program for preventing seasonal and avian H5N1 Influenza. Increased efforts are being focused on adjuvants that can broaden vaccine immunogenicity against emerging viruses and maximize vaccine supply on a worldwide scale. Here, we test protection against avian flu by using H5N1-derived rHA and GLA-SE, a two-part adjuvant system containing glucopyranosyl lipid adjuvant (GLA), a formulated synthetic Toll-like receptor 4 agonist, and a stable emulsion (SE) of oil in water, which is similar to the best-in-class adjuvants being developed for pandemic flu. Notably, a single submicrogram dose of rH5 adjuvanted with GLA-SE protects mice and ferrets against a high titer challenge with H5N1 virus. GLA-SE, relative to emulsion alone, accelerated induction of the primary immune response and broadened its durability against heterosubtypic H5N1 virus challenge. Mechanistically, GLA-SE augments protection via induction of a Th1-mediated antibody response. Innate signaling pathways that amplify priming of Th1 CD4 T cells will likely improve vaccine performance against future outbreaks of lethal pandemic flu.
BackgroundThe recent H1N1 influenza pandemic illustrated the shortcomings of the vaccine manufacturing process. The A/California/07/2009 H1N1 pandemic influenza vaccine or A(H1N1)pdm09 was available late and in short supply as a result of delays in production caused by low yields and poor antigen stability. Recombinant technology offers the opportunity to shorten manufacturing time. A trivalent recombinant hemagglutinin (rHA) vaccine candidate for seasonal influenza produced using the baculovirus expression vector system (BEVS) was shown to be as effective and safe as egg-derived trivalent inactivated vaccine (TIV) in human clinical studies. In this study, we describe the characterization of the A/California/07/2009 rHA protein and compare the H1N1 pandemic rHA to other seasonal rHA proteins.ResultsOur data show that, like other rHA proteins, purified A/California/07/2009 rHA forms multimeric rosette-like particles of 20–40 nm that are biologically active and immunogenic in mice as assayed by hemagglutination inhibition (HAI) antibody titers. However, proteolytic digest analysis revealed that A/California/07/2009 rHA is more susceptible to proteolytic degradation than rHA proteins derived from other seasonal influenza viruses. We identified a specific proteolytic site conserved across multiple hemagglutinin (HA) proteins that is likely more accessible in A/California/07/2009 HA, possibly as a result of differences in its protein structure, and may contribute to lower antigen stability.ConclusionWe conclude that, similar to the recombinant seasonal influenza vaccine, recombinant A(H1N1)pdm09 vaccine is likely to perform comparably to licensed A(H1N1)pdm09 vaccines and could offer manufacturing advantages.
The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.
H5N1 is a highly pathogenic avian influenza virus that can cause severe disease and death in humans. H5N1 is spreading rapidly in bird populations and there is great concern that this virus will begin to transmit between people and cause a global crisis. Vaccines are the cornerstone strategy for combating avian influenza but there are complex challenges for pandemic preparedness including the unpredictability of the vaccine target and the manufacturing requirement for rapid deployment. The less-than-optimal response against the 2009 H1N1 pandemic unmasked the limitations associated with influenza vaccine production and in 2010, the President’s Council of Advisors on Science and Technology re-emphasized the need for new recombinant-based vaccines and adjuvants that can shorten production cycles, maximize immunogenicity and satisfy global demand. In this article, the authors review the efforts spent in developing an effective vaccine for H5N1 influenza and summarize clinical studies that highlight the progress made to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.