Morbidity and mortality caused by rickettsioses have had a major influence on military activities and public health for >2000 years. The threat posed by the rickettsioses is reviewed, focusing on the impact and epidemiology of those that have adversely influenced wartime operations and the current challenges posed by these diseases. With their uneven worldwide distribution, the discovery of drug-refractory strains of Orientia tsutsugamushi, the increased threat of their use in acts of bioterrorism, frequent deployment of troops to regions of endemicity, and exposures due to increased humanitarian missions, these diseases continue to be a threat to military personnel in the field. Effective strategies to reduce the impact of these diseases include development of effective vaccines, enhanced surveillance, and development of new safe, effective, and odorless repellants. The continuation of a proven, highly productive military infectious disease research program is essential for providing solutions to these daunting tasks.
Two specific and sensitive polymerase chain reaction (PCR) assays were developed to detect and quantitate Orientia tsutsugamushi, the agent of scrub typhus, using a portion of the 47-kD outer membrane protein antigen/ high temperature requirement A gene as the target. A selected 47-kD protein gene primer pair amplified a 118-basepair fragment from all 26 strains of O. tsutsugamushi evaluated, but it did not produce amplicons when 17 Rickettsia and 18 less-related bacterial nucleic acid extracts were tested. Similar agent specificity for the real-time PCR assay, which used the same primers and a 31-basepair fluorescent probe, was demonstrated. This sensitive and quantitative assay determination of the content of O. tsutsugamushi nucleic acid used a plasmid containing the entire 47-kD gene from the Kato strain as a standard. Enumeration of the copies of O. tsutsugamushi DNA extracted from infected tissues from mice and monkeys following experimental infection with Orientia showed 27-5552 copies/microL of mouse blood, 14448-86012 copies/microL of mouse liver/spleen homogenate, and 3-21 copies/microL of monkey blood.
Five fluorogenic probe hydrolysis (TaqMan) reverse transcriptase PCR (RT-PCR) assays were developed for serotypes 1 to 4 and group-specific detection of dengue virus. Serotype-and group-specific oligonucleotide primers and fluorogenic probes were designed against conserved regions of the dengue virus genome. The RT-PCR assay is a rapid single-tube method consisting of a 30-min RT step linked to a 45-cycle PCR at 95 and 60°C that generates a fluorogenic signal in positive samples. Assays were initially evaluated against cell culture-derived dengue stock viruses and then with 67 dengue viremic human sera received from Peru, Indonesia, and Taiwan. The TaqMan assays were compared to virus isolation using C6/36 cells followed by an immunofluorescence assay using serotype-specific monoclonal antibodies. Viral titers in sera were determined by plaque assay in Vero cells. The serotype-specific TaqMan RT-PCR assay detected 62 of 67 confirmed dengue virus-positive samples, for a sensitivity of 92.5%, while the group-specific assay detected 66 of 67 confirmed dengue virus-positive samples, for a sensitivity of 98.5%. The TaqMan RT-PCR assays have a specificity of 100% based on the serotype concordance of all assays compared to cell culture isolation and negative results obtained when 21 normal human sera and plasma samples were tested. Our results demonstrate that the dengue virus TaqMan RT-PCR assays may be utilized as rapid, sensitive, and specific screening and serotyping tools for epidemiological studies of dengue virus infections.
Rickettsia prowazekii, the etiologic agent for epidemic typhus, and Borrelia recurrentis, the etiologic agent of relapsing fever, both utilize the same vector, the human body louse (Pediculus humanus), to transmit human disease. We have developed an assay to detect both bacterial pathogens in a single tube utilizing real-time PCR. Assays for both agents are specific. The R. prowazekii and B. recurrentis assays do not detect nucleic acid from R. typhi, R. canada, or any of eight spotted fever rickettsiae. In addition they did not react with Neorickettsia risticii, N. sennetsu, Franciscella persica, Bartonella quintana, Legionella pneumophila, Proteus mirabilis, Salmonella enterica, Escherichia coli, and Staphylococcus aureus. Moreover, the B. recurrentis assay did not detect B. duttonii, B. coriaceae, B. afzelii, B. garinii, B. hermsii, or B. burgdorferi nucleic acid. Both assays detected repeatedly only R. prowazekii or B. recurrentis either when tested alone or together in one test tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.