Abbreviations used in this paper: CsA, cyclosporine A; CSA, cross-sectional area; EDL, extensor digitorum longus; FDP, fl exor digitorum profundus; FHL, fourand-a-half LIM protein; HSA, human skeletal muscle ␣ -actin; LIM, Lin-11, Isl-1, Mec-3; MHC, myosin heavy chain; NBT, nitro blue tetrazolium chloride; NFAT, nuclear factor of activated T cells; RBM, reducing body myopathy.
Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.
Nemaline myopathy is a hereditary disease of skeletal muscle defined by a distinct pathology of electron-dense accumulations within the sarcomeric units called rods, muscle weakness and, in most cases, a slow oxidative (type 1) fiber predominance. We generated a transgenic mouse model to study this disorder by expressing an autosomal dominant mutant of alpha-tropomyosin(slow) previously identified in a human cohort. Rods were found in all muscles, but to varying extents which did not correlate with the amount of mutant protein present. In addition, a pathological feature not commonly associated with this disorder, cytoplasmic bodies, was found in the mouse and subsequently identified in human samples. Muscle weakness is a major feature of this disease and was examined with respect to fiber composition, degree of rod-containing fibers, fiber mechanics and fiber diameter. Hypertrophy of fast, glycolytic (type 2B) fibers was apparent at 2 months of age. Muscle weakness was apparent in mice at 5-6 months of age, mimicking the late onset observed in humans with this mutation. The late onset did not correlate with observed changes in fiber type and rod pathology. Rather, the onset of muscle weakness correlates with an age-related decrease in fiber diameter and suggests that early onset is prevented by hypertrophy of fast, glycolytic fibers. We suggest that the clinical phenotype is precipitated by a failure of the hypertrophy to persist and therefore compensate for muscle weakness.
The molecular mechanisms which are responsible for restricting skeletal muscle gene expression to specific fiber types, either slow or fast twitch, are unknown. As a first step toward defining the components which direct slow-fiber-specific gene expression, we identified the sequence elements of the human troponin I slow upstream enhancer (USE) that bind muscle nuclear proteins. These include an E-box, a MEF2 element, and two other elements, USE B1 and USE C1. In vivo analysis of a mutation that disrupts USE B1 binding activity suggested that the USE B1 element is essential for high-level expression in slow-twitch muscles. This mutation does not, however, abolish slow-fiber specificity. A similar analysis indicated that the USE C1 element may play only a minor role. We report the cloning of a novel human USE B1 binding protein, MusTRD1 (muscle TFII-I repeat domain-containing protein 1), which is expressed predominantly in skeletal muscle. Significantly, MusTRD1 contains two repeat domains which show remarkable homology to the six repeat domains of the recently cloned transcription factor TFII-I. Furthermore, both TFII-I and MusTRD1 bind to similar but distinct sequences, which happen to conform with the initiator (Inr) consensus sequence. Given the roles of MEF2 and basic helix-loop-helix (bHLH) proteins in muscle gene expression, the similarity of TFII-I and MusTRD1 is intriguing, as TFII-I is believed to coordinate the interaction of MADS-box proteins, bHLH proteins, and the general transcription machinery.
Spatially distinct populations of microfilaments, characterized by different tropomyosin (Tm) isoforms, are present within a neuron. To investigate the impact of altered tropomyosin isoform expression on neuronal morphogenesis, embryonic cortical neurons from transgenic mice expressing the isoforms Tm3 and Tm5NM1, under the control of the -actin promoter, were cultured in vitro. Exogenously expressed Tm isoforms sorted to different subcellular compartments with Tm5NM1 enriched in filopodia and growth cones, whereas the Tm3 was more broadly localized. The Tm5NM1 neurons displayed significantly enlarged growth cones accompanied by an increase in the number of dendrites and axonal branching. In contrast, Tm3 neurons displayed inhibition of neurite outgrowth. Recruitment of Tm5a and myosin IIB was observed in the peripheral region of a significant number of Tm5NM1 growth cones. We propose that enrichment of myosin IIB increases filament stability, leading to the enlarged growth cones. Our observations support a role for different tropomyosin isoforms in regulating interactions with myosin and thereby regulating morphology in specific intracellular compartments. INTRODUCTIONThe actin cytoskeleton plays an essential role in the structural changes that initially establish neuronal shape and subsequently contribute to the morphological differentiation of neurons. Actin filaments have been implicated in the initial sprouting of neurites, whereas microtubules strengthen and support the new extensions (Smith, 1988(Smith, , 1994.Tropomyosin (Tm) isoforms, integral components of actin microfilaments, form coiled-coil head-to-tail dimers that bind along the major groove of actin polymers (Phillips et al., 1979). Tms are derived from four highly conserved genes known as the ␣Tm fast , Tm, ␥Tm (Tm5NM), and ␦Tm genes that, via alternative splicing, give rise to Ͼ40 isoforms (LeesMiller and Helfman, 1991;Dufour et al., 1998;Cooley and Bergtrom, 2001). Despite the well understood function of Tms in muscle where, together with the troponin complex, they regulate contraction in a calcium-dependent manner, little is known about their role in nonmuscle cells. In vitro studies have implicated Tms in the stabilization of the actin cytoskeleton by protecting actin filaments from the severing action of gelsolin (Ishikawa et al., 1989) and the depolymerizing action of ADF/cofilin (Bernstein and Bamburg, 1982). Gene transfection studies have demonstrated that tropomyosin isoforms can regulate the organization of actin filaments in transformed cells (Prasad et al., 1993;Boyd et al., 1995;Gimona et al., 1996) and the neuroepithelial cell line B35 (Bryce et al., 2003).In neurons, a strict repertoire of Tm isoforms is known to be expressed. These include TmBr3, Tm5a and Tm5b from the ␣Tm fast gene; multiple products from the ␥Tm gene; and Tm4 from the ␦Tm gene. Most interestingly, Tm isoforms have been previously shown to be spatially and temporally regulated, identifying distinct subcellular compartments. The Tm5a and Tm5b isoforms are enric...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.