Exposure to low-levels of lead (Pb) during early development has been implicated in behavioral abnormalities and cognitive deficits in children. The present study is focused on developmental changes in hippocampus and cerebellum of rats following perinatal exposure to Pb. Pregnant rats were exposed to 0.2% Pb-acetate from gestation day 6 (GD 6) through postnatal day (PND) 21 and the activity levels of acetylcholinesterase (AChE) were estimated in cerebellum and hippocampus of pups at specific time points for 5 weeks. In both the brain regions, Pb-exposure decreased AChE activity with an increase in age. Histochemical observations conducted in 35 days old rat brain showed decreased AChE activity conspicuously in stratum oriens and dentate gyrus of hippocampus, and molecular and granule cell layers of cerebellum. In vitro studies conducted in 35 days old rat brain showed a considerable decrease in the specific activity of AChE at high concentrations (50-100 microM) of Pb in a concentration-dependent manner. However, at low concentrations (5-20 microM), Pb failed to produce such changes. In the presence of eserine (physostigmine), the specific inhibitor of AChE, the inhibitory effect of Pb was potentiated and this was more pronounced at low-concentrations of Pb. The behavioral responses in open-field also showed a significant decrease in both Pb exposed as well as eserine administered rats. These data suggest that low-level perinatal Pb-exposure induces alterations in cholinergic system in the cerebellum and hippocampus of developing brain even after the withdrawal of Pb-exposure, that may contribute to behavioral and learning deficits.
Leucine-rich repeat receptor-like kinases (LRR RLKs) comprise the largest group within the plant receptor-like kinase (RLK) superfamily, and the Arabidopsis genome alone contains over 200 LRR RLK genes. Although there is clear evidence for diverse roles played by individual LRR RLK genes in Arabidopsis growth and development, the evolutionary mechanism for this functional diversification is currently unclear. In this study, we focused on the LRRII RLK subfamily to investigate the molecular mechanisms that might have led to the functional differentiation of Arabidopsis LRR RLK genes. Phylogenetic analysis of 14 genes in this subfamily revealed three well-supported groups (I, II, and III). RT-PCR analysis did not find many qualitative differences in expression among these 14 genes in various Arabidopsis tissues, suggesting that evolution of regulatory sequences did not play a major role in their functional divergence. We analyzed substitution patterns in the predicted ligand-binding regions of these genes to examine if positive selection has acted to produce novel ligand-binding specificities, using the nonsynonymous/synonymous rate ratio (d (N)/d (S)) as an indicator of selective pressure. Estimates of d (N)/d (S) ratios from multiple methods indicate that nonsynonymous substitutions accumulated during divergence of the three lineages. Positive selection is likely to have occurred along the lineages ancestral to groups II and III. We suggest that positive selection on the ligand-binding sites of LRRII RLKs promoted diversification of ligand-binding specificities and thus contributed to the functional differentiation of Arabidopsis LRRII RLK genes during evolution.
The nervous system is the primary target for low-levels of lead (Pb) exposure and the developing brain appears to be especially vulnerable to Pb neurotoxicity. Chronic low-level Pb exposure causes growth retardation and intellectual impairment. In the present study the protective effect of melatonin during exposure to low-levels of Pb in human SH-SY5Y neuroblastoma cell cultures was assessed. The cells were exposed to Pb (0.01 to 10 microM) for 48 h. Pb inhibited the proliferation of neuroblastoma cells significantly in a concentration-dependent manner. A 50% inhibition (IC50) of cell proliferation was observed at about 5 microM Pb. Pb decreased (16% to 62%) the levels of total cellular glutathione (GSH) in a concentration (0.1 to 10 microM)-dependent manner. Exposure of cells to Pb (5 microM) for 48 h resulted in an eightfold increase in caspase-3 activity and prostaglandin E2 (PGE2) level. Pretreatment with melatonin (10 microM) blocked the effects of Pb on GSH content and caspase-3 activity, and showed significant improvement in reducing the level of PGE2. The results suggest that some of the neurotoxic effects of Pb may be partly mediated by apoptosis and pretreatment with melatonin can prevent these effects. The present study asserts the neuroprotective effect of melatonin in conditions of Pb-induced toxicity in neuroblastoma cell cultures.
Zusammenfassung Studienziel Implementierung und Evaluation eines sektorübergreifenden Komplexmodells für Menschen mit schwerer psychischer Erkrankung („severe mental illness“, SMI). Methodik Das Versorgungsmodell wurde an einer psychiatrisch-psychotherapeutischen Fachklinik implementiert. Mithilfe eines intensiven Fallmanagements setzte das patientenzentrierte und bedarfsorientierte Komplexmodell für Menschen mit SMI am Übergang zwischen stationärer und ambulanter Behandlung an. Die Evaluation erfolgte mittels einer gematchten Kontrollgruppe (Interventionsgruppe: n = 46; Kontrollgruppe: n = 21). Ergebnisse Nach klinischer Einschätzung profitierten zwei Drittel der Patient*innen vom Versorgungsmodell. Bei den Betroffenen zeigte sich im Behandlungsverlauf eine signifikante Reduktion der Inanspruchnahme stationär-psychiatrischer Versorgungsstrukturen sowie eine Verbesserung der klinischen Symptomatik. Schlussfolgerung Für Menschen mit SMI besteht eine Versorgungslücke beim Übergang von der stationären in die ambulante Versorgung, die durch das Versorgungsmodell partiell geschlossen werden konnte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.