Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)The results reveal important, molecular level detail of CO 2 binding in a prominent family of Metal-Organic Frameworks whose adsorption properties can be readily tuned with metal-substitution. This information, which is of signifi cant importance in the context of carbon capture, allows us to make a detailed comparison with DFT calculations; theoretical results show excellent agreement with experimental determination of intramolecular CO 2 angles, CO 2 binding geometries, and isosteric heats of CO 2 adsorption.
Using density functional theory, we systematically compute and investigate the binding enthalpies of 14 different small molecules in a series of isostructural metal–organic frameworks, M-MOF-74, with M = Mg, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. The small molecules we consider include major flue-gas components, trace gases, and small hydrocarbons, i.e., H2, CO, CO2, H2O, H2S, N2, NH3, SO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8. In total, the adsorption energetics of 140 unique systems are presented and discussed. Dispersion interactions are included by employing a nonlocal van der Waals density functional, vdW-DF2. Hubbard U corrections are applied to the localized d electrons of transition metal atoms, and the impact of such corrections is assessed quantitatively. For systems for which measured binding enthalpies have been reported, our calculations lead to excellent overall agreement with experimentally determined structures and isosteric heats of adsorption. For systems that have yet to be realized or characterized, this study provides quantitative predictions, establishes a better understanding of the role of different transition-metal cations in small-molecule binding at open-metal sites, and identifies routes for predicting potential candidates for energy-related gas-separation applications. For example, we predict that Cu-MOF-74 will exhibit selectivity of CO2 over H2O and that Mn-MOF-74 can be used to separate trace flue-gas impurities and toxic gases from gas mixtures.
Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.