We introduce a new method for showing that the roots of the characteristic polynomial of certain finite lattices are all nonnegative integers. This method is based on the notion of a quotient of a poset which will be developed to explain this factorization. Our main theorem will give two simple conditions under which the characteristic polynomial factors with nonnegative integer roots. We will see that Stanley's Supersolvability Theorem is a corollary of this result. Additionally, we will prove a theorem which gives three conditions equivalent to factorization. To our knowledge, all other theorems in this area only give conditions which imply factorization. This theorem will be used to connect the generating function for increasing spanning forests of a graph to its chromatic polynomial. We finish by mentioning some other applications of quotients of posets as well as some open questions.
International audience
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanley’s $(-1)$-color theorem.
Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans multiplicité pour son antipode. On obtient ensuite une famille d'algèbres de Hopf combinatoires en définissant une famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donnent lieu à des fonctions symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-$f$. Nousallons également utiliser des caractères pour donner une généralisation du théorème $(-1)$ de Stanley.
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases.
International audience
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric func- tions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. We also provide a Remmel-Whitney style rule to generate these coefficients algorithmically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.