Surfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, wormlike micelles can transition from entangled to branched and multiconnected structures with increasing salt concentration. Under certain flow conditions, micellar structural transitions follow different trajectories. In this work, we consider the flow of two semidilute wormlike micellar solutions through microposts, focusing on their microstructural and rheological evolutions. Both solutions contain cetyltrimethylammonium bromide and sodium salicylate. One is weakly viscoelastic and shear thickening, whereas the other is strongly viscoelastic and shear thinning. When subjected to strain rates of ∼10 3 s −1 and strains of ∼10 3 , we observe the formation of a stable flow-induced structured phase (FISP), with entangled, branched, and multiconnected micellar bundles, as evidenced by electron microscopy. The high stretching and flow alignment in the microposts enhance the flexibility and lower the bending modulus of the wormlike micelles. As flexible micelles flow through the microposts, it becomes energetically favorable to minimize the number of end caps while concurrently promoting the formation of cross-links. The presence of spatial confinement and extensional flow also enhances entropic fluctuations, lowering the energy barrier between states, thus increasing transition frequencies between states and enabling FISP formation. Whereas the rheological properties (zero-shear viscosity, plateau modulus, and stress relaxation time) of the shear-thickening precursor are smaller than those of the FISP, those of the shear-thinning precursor are several times larger than those of the FISP. This rheological property variation stems from differences in the structural evolution from the precursor to the FISP. microfluidics | microrheology | mesh size S urfactant molecules in aqueous solutions can self-assemble into different structures, such as spherical micelles, cylindrical micelles, lamellar phases, and vesicles (1). The morphology of these self-assembled structures is influenced by surfactant concentration, temperature, external additives (e.g., cosurfactants or salts), and flow conditions. Cylindrical micelles in the presence of inorganic or organic salts can self-assemble into large, flexible, and elongated wormlike micelles that exhibit viscoelastic properties (2-4). The ionic strength of the salt screens the electrostatic repulsions between the charged surfactant head groups, promoting cylindrical micellar growth (1-3). At higher salt concentrations, the entangled linear micelles can transition to branched and multiconnected micellar networks, as evidenced by rheological measurements, light scattering techniques, and electron microcopy (EM) imaging (5-18). Additionally, wormlike micellar solutions are known to exhibit a variety of interesting phenomena, some of which are shear banding (19-21), shear thickening (22, 23), shear-induced transitions and insta...
The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity make them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies has prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically-diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of
In equilibrium, wormlike micelles can transition from entangled to branched structures with increasing surfactant concentrations and ionic strength. Under flow conditions, structural transition of micellar solutions can follow very different trajectories. In this study we consider the flow of a semi-dilute wormlike micellar solution through an array of microposts, with focus on its rheological and microstructural evolutions. Specifically, the micellar solution (precursor) contains cationic surfactant cetyltrimethylammonium bromide (CTAB) and hydrotropic organic salt 3-hydroxynaphthalene-2-carboxylate (SHNC). We report the formation of a flow induced structured phase (FISP), with entangled, branched, and multi-connected micellar bundles, evidenced by electron microscopy and small-angle neutron scattering (SANS). By integrating gold-etched microheaters with the micropost design in a microfluidic device, we investigate the localized temperature effect on both the precursor and FISP, with complementary investigations from SANS. We observe that the FISP does not completely disintegrate at high temperatures, whereas, the precursor exhibits shortening of wormlike micelles as temperature increases. We also correlate the microstructure of both FISP and precursor with two point passive microrheology and bulk rheology characterizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.