Two NO synthase (NOS) isoforms have been described in vessels, an endothelial constitutive NOS (eNOS) and an inducible NOS (iNOS). The purpose of the present study was to examine the endothelium-dependent and endothelium-independent hypotensive response in aging rats, analyzing the ability of their vessels to produce NO. The studies were performed in 2 groups of euvolemic, conscious, male Wistar rats: aging rats (n=20, 18 months old) and young rats (n=20, 5 months old). The hypotensive responses to acetylcholine, bradykinin, and sodium nitroprusside were determined. Furthermore, the expression of the NOS isoforms by Western blot and the eNOS and iNOS activities, defined as Ca2+-dependent and Ca2+-independent conversion of [14C]L-arginine into [14C]L-citrulline, respectively, were also determined. In the aging rats, we found an impaired hypotensive response to acetylcholine and bradykinin (2 NO- and endothelium-dependent hypotensive agents) that was accompanied by a preserved hypotensive response to sodium nitroprusside. Aging rats also demonstrated an enhanced sensitivity response to the pressor effect of the L-arginine antagonist L-Nomega-nitro-L-arginine and a reduced vasoconstrictor response to angiotensin II. The inhibition of NO synthesis normalized the pressor effect of angiotensin II in the aging animals. Nitrite plus nitrate plasma levels were increased in aging rats. Furthermore, cGMP content was also higher in the aging vessels. In the aging aortas, the expression of both eNOS and iNOS isoforms was enhanced. However, in aging rats, the activity of the eNOS isoform was markedly reduced, a finding that was accompanied by the presence of iNOS activity. The vessel wall of aging rats showed an enhanced expression of eNOS and iNOS isoforms. However, eNOS activity was reduced in the aging animals. These findings could explain the impaired endothelium-dependent hypotensive response associated with aging.
Collagen fibers are the most abundant components of the extracellular matrix in arteries and myocardium. Disturbances in the collagen turnover (synthesis and degradation) have been linked to inflammatory diseases including cardiovascular pathological syndromes. In the myocardium, changes in collagen turnover may result in ventricle dilatation and subsequent contractile dysfunction. In arteries, collagen synthesis and degradation are associated with the progression of atherosclerotic disease and intimal hyperplasia following injury. Collagen synthesis is tightly regulated at several levels: synthesis of procollagens, suitable folding of polypeptides, secretion and cross-linking of mature fibers. On the other hand, degradation of newly synthesised procollagen and mature collagen fibers depends on the action of Matrix-Metalloproteinases (MMPs). The major role of collagen turnover in cardiovascular disorders has stimulated the search for pharmacological agents that interfere with collagen turnover at different levels. These drugs can theoretically act through modulation of the synthesis of procollagens or by interference with their post-translational modifications. Another group of pharmacological agents inhibit collagen breakdown (MMP inhibitors). Beneficial effects of compounds that target collagen metabolism have been reported. Unfortunately, many of these compounds also give rise to serious adverse effects due to interference with vital biological processes in which collagen plays an important role. In this paper, we will review cardiovascular diseases in which altered local collagen turnover is a key feature. Subsequently, the effect of compounds that have been developed and tested to modulate collagen synthesis, cross-linking or breakdown will be discussed.
Objective-Reticulon-4/Nogo (Nogo-B) protects mouse arteries from lumen loss by reducing smooth muscle cell (SMC) migration and intimal thickening. Our goal was to determine plaque and circulating levels of Nogo-B in atherosclerotic and control subjects. Therefore, we studied the relationships between local Nogo-B, plaque characteristics, and clinical data in patients undergoing carotid endarterectomy. Methods and Results-Western blot analysis showed that endarterectomy specimens from the femoral (nϭ19) and carotid arteries (nϭ145) contained significantly less Nogo-B than nonatherosclerotic mammary arteries (nϭ8; PϽ0.003) and aortas (nϭ15; Pϭ0.03). Immunohistochemistry revealed that in atherosclerotic lesions, Nogo-B was expressed by macrophage/foam cells, SMC rich, and neo-vascularized areas. Atheromatous plaques (Ͼ40% fat content) showed a significant reduction in Nogo-B expression (Pϭ0.002). Nogo-B expression levels were significantly lower in patients with more than 90% of carotid stenosis (Pϭ0.04) or restenotic lesions after prior carotid intervention (duplex; Pϭ0.01).In contrast, plasmatic levels of Nogo-B (soluble Nogo-B) did not differ between atherosclerotic subjects (nϭ68) and risk-factor matched controls (nϭ63; Pϭ0.5). Conclusion-Our
Losartan decreased platelet aggregation by a thromboxane A2-dependent mechanism. EXP 3174 was less potent than losartan in reducing thromboxane A2-dependent platelet activation. Captopril and exogenous angiotensin II had no effect on human platelet activation. These results suggest that losartan reduced thromboxane A2-dependent platelet activation independently of its effect on angiotensin II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.