By critically evaluating previous models, a new mechanistic model is developed to describe simultaneous storage and growth processes occurring in activated sludge systems under aerobic conditions. Identifiability was considered an important criterion during the model development since it among others helps to increase the realiability and applicability of models to full-scale WWTPs. A second order model was proposed for description of the degradation of the storage products under famine conditions. The model is successfully calibrated by only using OUR data obtained from batch experiments. Calibrations were performed with biomass from full-scale WWTPs in Belgium and Spain. Predictions of the calibrated model were successfully confirmed using off-line PHB measurements, supporting the validity of the model. An iterative experimental design procedure was successfully applied and found to remarkably improve the parameter estimation accuracy for the growth on storage parameters K1 and K2, which used to have large confidence intervals when using standard experiments. The estimated biomass growth yield on substrate (0.58 mgCOD/mgCOD) is quite close to the theoretically expected range for heterotrophic growth. This became possible by properly accounting for the storage process. Moreover, the maximum growth rate was predicted in the range 0.7-1.3 per day. This range, albeit quite lower than the values reported for the growth-based ASM models, is believed to be more realistic. Finally, the new model is expected to better and more mechanistically describe simultaneous storage and growth activities of activated sludge systems and as such could contribute to improved design, operation and control of those systems.
An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs.
Nitrous oxide (NO) is an important pollutant which is emitted during the biological nutrient removal (BNR) processes of wastewater treatment. Since it has a greenhouse effect which is 265 times higher than carbon dioxide, even relatively small amounts can result in a significant carbon footprint. Biological nitrogen (N) removal conventionally occurs with nitrification/denitrification, yet also through advanced processes such as nitritation/denitritation and completely autotrophic N-removal. The microbial pathways leading to the NO emission include hydroxylamine oxidation and nitrifier denitrification, both activated by ammonia oxidizing bacteria, and heterotrophic denitrification. In this work, a critical review of the existing literature on NO emissions during BNR is presented focusing on the most contributing parameters. Various factors increasing the NO emissions either per se or combined are identified: low dissolved oxygen, high nitrite accumulation, low chemical oxygen demand to nitrogen ratio, slow growth of denitrifying bacteria, uncontrolled pH and temperature. However, there is no common pattern in reporting the NO generation amongst the cited studies, a fact that complicates its evaluation. When simulating NO emissions, all microbial pathways along with the potential contribution of abiotic NO production during wastewater treatment at different dissolved oxygen/nitrite levels should be considered. The undeniable validation of the robustness of such models calls for reliable quantification techniques which simultaneously describe dissolved and gaseous NO dynamics. Thus, the choice of the N-removal process, the optimal selection of operational parameters and the establishment of validated dynamic models combining multiple NO pathways are essential for studying the emissions mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.