The UN Sustainable Development Goal 14 aims to "conserve and sustainably use the oceans, seas and marine resources for sustainable development". Achieving this goal will require rebuilding the marine life-support systems that deliver the many benefits society receives from a healthy ocean. In this Review we document the recovery of marine populations, habitats and ecosystems following past conservation interventions. Recovery rates across studies suggest that substantial recovery of the abundance, structure, and function of marine life could be achieved by 2050, should major pressures, including climate change, be mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an ethical obligation, and a smart economic objective to achieve a sustainable future. The ability of the ocean to support human wellbeing is at a crossroads. The ocean currently contributes 2.5% of global GDP and provides employment to 1.5% of the global workforce 1 , with an estimated output of US$1.5 trillion in 2010, expected to double by 2030 1. And there is increased attention on the ocean as a source of food and water 2 , clean energy 1 , and as a means to mitigate climate change 3,4. At the same time, many marine species, habitats and ecosystems have suffered catastrophic declines 5-8 and climate change is further undermining ocean productivity and biodiversity 9-14 (Fig. 1). The conflict between growing human dependence on ocean resources and declining marine life under human pressures (Fig. 1) is focusing unprecedented attention on the connection between ocean conservation and human well-being 15. The UN Sustainable Development Goal 14 (SDG14 or "life below water") aims to "conserve and sustainably use the oceans, seas and marine resources for sustainable development" (https://sustainabledevelopment.un.org/sdg14). Achieving this goal will require rebuilding marine life, defined in the context of SDG14 as the life-support systems (populations, habitats, and ecosystems) that deliver the many benefits society receives from a healthy ocean 16,17. Here we show that, in addition to being a necessary goal, substantially rebuilding marine life within a human generation is largely achievable, if the required actions, prominently mitigating climate change, are deployed at scale. Slowing the decline of marine life and achieving net gains By the time the general public admired life below water through the "Undersea World of Jacques Cousteau" (1968-1976), the abundance of large marine animals was already greatly reduced 5-7,18. And the abundance of marine animals and habitats that support ecosystems services has shrunk to a fraction of what was in place when the first frameworks to conserve and sustain marine life were introduced in the 1980s (Fig. 1), to a fraction of pre-exploitation levels 5,6,19,20. Currently, at least one-third of fish stocks are overfished 21 , one-third to half of vulnerable marine habitats have been lost 8 , a substantial fraction of the coastal ocean suffers from pollution, eutrophication, oxygen d...
Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social-ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world.artisanal fishing | ecosystem services | human dimensions | social-ecological systems | window of opportunity
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.
Abstract. Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically, then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that, while not strictly biological, have a strong influence on the species present or ecological processes. Our scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of ecosystem goods and services for people ultimately depend on meeting this objective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.