We construct a reliable estimation method for evolutionary parameters within the Wright-Fisher model, which describes changes in allele frequencies due to selection and genetic drift, from time-series data. Such data exist for biological populations, for example via artificial evolution experiments, and for the cultural evolution of behavior, such as linguistic corpora that document historical usage of different words with similar meanings. Our method of analysis builds on a Beta-with-Spikes approximation to the distribution of allele frequencies predicted by the Wright-Fisher model. We introduce a self-contained scheme for estimating parameters in the approximation, and demonstrate its robustness with synthetic data, especially in the strong-selection and near-extinction regimes where previous approaches fail. We further apply the method to allele frequency data for baker's yeast (Saccharomyces cerevisiae), finding a significant signal of selection in cases where independent evidence supports such a conclusion. We further demonstrate the possibility of detecting time-points at which evolutionary parameters change in the context of a historical spelling reform in the Spanish language.
We construct a reliable estimation of evolutionary parameters within the Wright-Fisher model, which describes changes in allele frequencies due to selection and genetic drift, from time-series data. Such data exist for biological populations, for example via artificial evolution experiments, and for the cultural evolution of behavior, such as linguistic corpora that document historical usage of different words with similar meanings. Our method of analysis builds on a Beta-with-Spikes approximation to the distribution of allele frequencies predicted by the Wright-Fisher model. We introduce a self-contained scheme for estimating parameters in the approximation, and demonstrate its robustness with synthetic data, especially in the strong-selection and near-extinction regimes where previous approaches fail. We further apply to allele frequency data for baker's yeast (Saccharomyces cerevisiae), finding a significant signal of selection in cases where independent evidence supports such a conclusion. We further demonstrate the possibility of detecting time-points at which evolutionary parameters change in the context of a historical spelling reform in the Spanish language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.