This work presents a metaheuristic with distributed processing that finds solutions for an optimization model of the university course timetabling problem, where collective communication and point-to-point communication are applied, which are used to generate cooperation between processes. The metaheuristic performs the optimization process with simulated annealing within each solution that each process works. The highlight of this work is presented in the algorithmic design for optimizing the problem by applying cooperative processes. In each iteration of the proposed heuristics, collective communication allows the master process to identify the process with the best solution and point-to-point communication allows the best solution to be sent to the master process so that it can be distributed to all the processes in progress in order to direct the search toward a space of solutions which is close to the best solution found at the time. This search is performed by applying simulated annealing. On the other hand, the mathematical representation of an optimization model present in the literature of the university course timing problem is performed. The results obtained in this work show that the proposed metaheuristics improves the results of other metaheuristics for all test instances. Statistical analysis shows that the proposed metaheuristic presents a different behavior from the other metaheuristics with which it is compared.
La industria 4.0 se resume con el concepto de internet de las cosas. Se argumenta que este cambio podría llegar a ser la cuarta revolución industrial, puesto que se refiere a un sistema completo que contribuye a mejorar y fortalecer una empresa gracias a unos sistemas renovados. Lo que busca esta industria es elaborar herramientas para la automatización, que se basa en la recolección de datos mediante herramientas inteligentes, como el software o sensores, que ayudan en esta tarea y ahorran mucho trabajo. Dentro de este artículo se explica el origen de la industria 4.0, que se crea gracias a la revolución tecnologica que se ha experimentado en los últimos años; además, se visualiza la aplicación de algunos conceptos que tienen que ver con la cuarta revolución industrial para el crecimiento de las empresas y por la facilidad de llevar a cabo trabajos para su beneficio.
This work presents an optimization proposal to better the computational convergence time in convection-diffusion and driven-cavity problems by applying a simulated annealing (SA) metaheuristic, obtaining optimal values in relaxation factors (RF) that optimize the problem convergence during its numerical execution. These relaxation factors are tested in numerical models to accelerate their computational convergence in a shorter time. The experimental results show that the relaxation factors obtained by the SA algorithm improve the computational time of the problem convergence regardless of user experience in the initial low-quality RF proposal.
This paper presents a methodological scheme to obtain the maximum benefit in occupational health by attending to psychosocial risk factors in a company. This scheme is based on selecting an optimal subset of psychosocial risk factors, considering the departments’ budget in a company as problem constraints. This methodology can be summarized in three steps: First, psychosocial risk factors in the company are identified and weighted, applying several instruments recommended by business regulations. Next, a mathematical model is built using the identified psychosocial risk factors information and the company budget for risk factors attention. This model represents the psychosocial risk optimization problem as a Multidimensional Knapsack Problem (MKP). Finally, since Multidimensional Knapsack Problem is NP-hard, one simulated annealing algorithm is applied to find a near-optimal subset of factors maximizing the psychosocial risk care level. This subset is according to the budgets assigned for each of the company’s departments. The proposed methodology is detailed using a case of study, and thirty instances of the Multidimensional Knapsack Problem are tested, and the results are interpreted under psychosocial risk problems to evaluate the simulated annealing algorithm’s performance (efficiency and efficacy) in solving these optimization problems. This evaluation shows that the proposed methodology can be used for the attention of psychosocial risk factors in real companies’ cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.