Intense nonpharmaceutical interventions were put in place in China to stop transmission of the novel coronavirus disease 2019 (COVID-19). As transmission intensifies in other countries, the interplay between age, contact patterns, social distancing, susceptibility to infection, and COVID-19 dynamics remains unclear. To answer these questions, we analyze contact survey data for Wuhan and Shanghai before and during the outbreak and contact-tracing information from Hunan province. Daily contacts were reduced seven- to eightfold during the COVID-19 social distancing period, with most interactions restricted to the household. We find that children 0 to 14 years of age are less susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than adults 15 to 64 years of age (odds ratio 0.34, 95% confidence interval 0.24 to 0.49), whereas individuals more than 65 years of age are more susceptible to infection (odds ratio 1.47, 95% confidence interval 1.12 to 1.92). Based on these data, we built a transmission model to study the impact of social distancing and school closure on transmission. We find that social distancing alone, as implemented in China during the outbreak, is sufficient to control COVID-19. Although proactive school closures cannot interrupt transmission on their own, they can reduce peak incidence by 40 to 60% and delay the epidemic.
BackgroundThe coronavirus disease 2019 (COVID-19) epidemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in Wuhan city, Hubei province, in December, 2019, and has spread throughout China. Understanding the evolving epidemiology and transmission dynamics of the outbreak beyond Hubei would provide timely information to guide intervention policy. MethodsWe collected individual information from official public sources on laboratory-confirmed cases reported outside Hubei in mainland China for the period of Jan 19 to Feb 17, 2020. We used the date of the fourth revision of the case definition (Jan 27) to divide the epidemic into two time periods (Dec 24 to Jan 27, and Jan 28 to Feb 17) as the date of symptom onset. We estimated trends in the demographic characteristics of cases and key time-to-event intervals. We used a Bayesian approach to estimate the dynamics of the net reproduction number (R t ) at the provincial level. FindingsWe collected data on 8579 cases from 30 provinces. The median age of cases was 44 years (33-56), with an increasing proportion of cases in younger age groups and in elderly people (ie, aged >64 years) as the epidemic progressed. The mean time from symptom onset to hospital admission decreased from 4•4 days (95% CI 0•0-14•0) for the period of Dec 24 to Jan 27, to 2•6 days (0•0-9•0) for the period of Jan 28 to Feb 17. The mean incubation period for the entire period was estimated at 5•2 days (1•8-12•4) and the mean serial interval at 5•1 days (1•3-11•6). The epidemic dynamics in provinces outside Hubei were highly variable but consistently included a mixture of case importations and local transmission. We estimated that the epidemic was self-sustained for less than 3 weeks, with mean Rt reaching peaks between 1•08 (95% CI 0•74-1•54) in Shenzhen city of Guangdong province and 1•71 (1•32-2•17) in Shandong province. In all the locations for which we had sufficient data coverage of Rt, Rt was estimated to be below the epidemic threshold (ie, <1) after Jan 30. Interpretation Our estimates of the incubation period and serial interval were similar, suggesting an early peak of infectiousness, with possible transmission before the onset of symptoms. Our results also indicate that, as the epidemic progressed, infectious individuals were isolated more quickly, thus shortening the window of transmission in the community. Overall, our findings indicate that strict containment measures, movement restrictions, and increased awareness of the population might have contributed to interrupt local transmission of SARS-CoV-2 outside Hubei province.
East Asia is as a principal hotspot for emerging zoonotic infections. Understanding the likely pathways for their emergence and spread requires knowledge on human-human and human-animal contacts, but such studies are rare. We used self-completed and interviewer-completed contact diaries to quantify patterns of these contacts for 965 individuals in 2017/2018 in a high-income densely-populated area of China, Shanghai City. Interviewer-completed diaries recorded more social contacts (19.3 vs. 18.0) and longer social contact duration (35.0 vs. 29.1 hours) than self-reporting. Strong age-assortativity was observed in all age groups especially among young participants (aged 7–20) and middle aged participants (25–55 years). 17.7% of participants reported touching animals (15.3% (pets), 0.0% (poultry) and 0.1% (livestock)). Human-human contact was very frequent but contact with animals (especially poultry) was rare although associated with frequent human-human contact. Hence, this densely populated area is more likely to act as an accelerator for human-human spread but less likely to be at the source of a zoonosis outbreak. We also propose that telephone interview at the end of reporting day is a potential improvement of the design of future contact surveys.
COVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.