Persistent gastritis induced by Helicobacter pylori is the strongest known risk factor for adenocarcinoma of the distal stomach, yet only a fraction of colonized persons ever develop gastric cancer. The H. pylori cytotoxin-associated gene (cag) pathogenicity island encodes a type IV secretion system that delivers the bacterial effector CagA into host cells after bacterial attachment, and cag ؉ strains augment gastric cancer risk. A host effector that is aberrantly activated in gastric cancer precursor lesions is -catenin, and activation of -catenin leads to targeted transcriptional up-regulation of genes implicated in carcinogenesis. We report that in vivo adaptation endowed an H. pylori strain with the ability to rapidly and reproducibly induce gastric dysplasia and adenocarcinoma in a rodent model of gastritis. Compared with its parental noncarcinogenic isolate, the oncogenic H. pylori strain selectively activates -catenin in model gastric epithelia, which is dependent on translocation of CagA into host epithelial cells. -Catenin nuclear accumulation is increased in gastric epithelium harvested from gerbils infected with the H. pylori carcinogenic strain as well as from persons carrying cag ؉ vs. cag ؊ strains or uninfected persons. These results indicate that H. pylori-induced dysregulation of -catenindependent pathways may explain in part the augmentation in the risk of gastric cancer conferred by this pathogen.bacteria ͉ cancer ͉ inflammation
BACKGROUND & AIMS-Gastric cancer evolves in the setting of a pathologic mucosal milieu characterized by both loss of acid-secreting parietal cells and mucous cell metaplasias. Indeed, mucous cell metaplasia is considered the critical preneoplastic lesion for gastric cancer. Previous investigations have shown that infection of mice with Helicobacter felis or induction of acute parietal cell loss with the drug DMP-777 leads to the emergence of a type of metaplasia designated spasmolytic polypeptide-expressing metaplasia (SPEM). We have hypothesized that SPEM arises from proliferating cells in gland bases, either from a cryptic progenitor cell or by transdifferentiation of mature chief cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.