Hyaluronan (hyaluronic acid, HA) is a linear naturally occurring polysaccharide formed from repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronate. Despite its relatively simple structure, HA is an extraordinarily versatile glycosaminoglycan currently receiving attention across a wide front of research areas. It has a very high molar mass, usually in the order of millions of Daltons, and possesses interesting visco-elastic properties based on its polymeric and polyelectrolyte characteristics. HA is omnipresent in the human body and in other vertebrates, occurring in almost all biological fluids and tissues, although the highest amounts of HA are found in the extracellular matrix of soft connective tissues. HA is involved in several key processes, including cell signaling, wound repair and regeneration, morphogenesis, matrix organization and pathobiology. Clinically, it is used as a diagnostic marker for many disease states including cancer, rheumatoid arthritis, liver pathologies, and as an early marker for impending rejection following organ transplantation. It is also used for supplementation of impaired synovial fluid in arthritic patients, following cataract surgery, as a filler in cosmetic and soft tissue surgery, as a device in several surgical procedures, particularly as an anti-adhesive following abdominal procedures, and also in tissue engineering. This review will provide an overview of the structure and physiological role of HA, as well as of its biomedical and industrial applications. Recent advances in biotechnological approaches for the preparation of HA-based materials, and as a component of tissue scaffolding for artificial organs will also be presented.
It was investigated to what extent isolated, monomeric and polymeric carbohydrates as well as cartilage specimens are affected by hydroxyl radicals generated by gamma-irradiation or Fenton reaction and what products can be detected by means of NMR spectroscopy. Resonances of all protons in glucose and other monosaccharides as well as carbon resonances in 13C-enriched glucose were continuously diminished upon gamma-irradiation. Formate and malondialdehyde were found as NMR detectable products in irradiated glucose solutions under physiologically relevant (aerated) conditions. In polysaccharide solutions (e.g. hyaluronic acid) gamma-irradiation and also treatment with the Fenton reagent caused first an enhancement of resonances according to mobile N-acetyl groups at 2.02 ppm. This indicates a breakdown of glycosidic bonds in polysaccharides. Using higher radiation doses or higher concentrations of the Fenton reagent formate was also detected. The same sequence of events was observed upon treatment of bovine nasal cartilage with the Fenton reagent. First, glycosidic linkages in cartilage polysaccharides were cleaved and subsequently formate was formed. In contrast, collagen of cartilage was affected only to a very low extent. Thus, HO-radicals caused the same action on cartilage as on isolated polymer solutions, inducing a fragmentation of polysaccharides and the formation of formate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.