We examined the genetic diversity and structure of wolf populations in northwestern Russia. Populations in Republic of Karelia and Arkhangelsk Oblast were sampled during 1995-2000, and 43 individuals were genotyped with 10 microsatellite markers. Moreover, 118 previously genotyped wolves from the neighbouring Finnish population were used as a reference population. A relatively large amount of genetic variation was found in the Russian populations, and the Karelian wolf population tended to be slightly more polymorphic than the Arkhangelsk population. We found significant inbreeding (F = 0.094) in the Karelian, but not in the Arkhangelsk population. The effective size estimates of the Karelian wolf population based on the approximate Bayesian computation and linkage disequilibrium methods were 39.9 and 46.7 individuals, respectively. AMOVA-analysis and exact test of population differentiation suggested clear differentiation between the Karelian, Arkhangelsk and Finnish wolf populations. Indirect estimates of gene flow based on the level of population differentiation (/ ST = 0.152) and frequency of private alleles (0.029) both suggested a low level of gene flow between the populations (Nm = 1.4 and Nm = 3.7, respectively). Assignment analysis of Karelian and Finnish populations suggested an even lower number of recent migrants (less than 0.03) between populations, with a larger amount of migration from Finland to Karelia than vice versa. Our findings emphasise the role of physical obstacles and territorial behaviour in creating barriers to gene flow between populations in relatively limited geographical areas, even in large-bodied mammalian species with long-distance dispersal capabilities and an apparently continuous population structure.
Background We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts. Results Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p = 0.041), and this finding was more apparent among the best-performing subjects (p < 0.001). Conclusions These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training.
BackgroundWe have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups.ResultsThe distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1.ConclusionsWe propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.