Adaptive behavior critically depends on performance monitoring (PM), the ability to monitor action outcomes and the need to adapt behavior. PM-related brain activity has been linked to guiding decisions about whether action adaptation is warranted. The present study examined whether PM-related brain activity in a flanker task, as measured by electroencephalography (EEG), was associated with adaptive behavior in daily life. Specifically, we were interested in the employment of self-control, operationalized as self-control failures (SCFs), and measured using ecological momentary assessment. Analyses were conducted using an adaptive elastic net regression to predict SCFs from EEG in a sample of 131 participants. The model was fit using within-subject averaged response-locked EEG activity at each electrode and time point within an epoch surrounding the response. We found that higher amplitudes of the error-related negativity (ERN) were related to fewer SCFs. This suggests that lower error-related activity may relate to lower recruitment of interventive self-control in daily life. Altered cognitive control processes, like PM, have been proposed as underlying mechanisms for various mental disorders. Understanding how alterations in PM relate to regulatory control might therefore aid in delineating how these alterations contribute to different psychopathologies.
It is a daily challenge for our brains to establish new memories via learning while providing stable storage of remote memories. In the adult vertebrate brain, bimodal regulation of the extracellular matrix (ECM) may regulate the delicate balance of learning-dependent plasticity and stable memory formation. Here, we trained adult male mice in a cortex-dependent auditory discrimination task and measured the abundance of ECM proteins brevican (BCN) and tenascin-R over the course of acquisition learning, consolidation, and long-term recall in two learning-relevant brain regions; the auditory cortex and hippocampus. Although early training led to a general downregulation of total ECM proteins, successful retrieval correlated with a region-specific and transient upregulation of BCN levels in the auditory cortex. No other parameter such as arousal or stress could account for the transient and region-specific BCN upregulation. This performance-dependent biphasic regulation of the ECM may assist transient plasticity to facilitate initial learning and subsequently promote the long-term consolidation of memory.
Study Objectives Slow oscillations (SO) during slow-wave sleep foster the consolidation of declarative memory. Children with attention-deficit hyperactivity disorder (ADHD) display deficits in the sleep-associated consolidation of declarative memory, possibly due to an altered function of SO. The present study aimed at enhancing SO activity using closed-looped acoustic stimulation during slow-wave sleep in children with ADHD. Methods A total of 29 male children (14 with ADHD; aged 8–12 years) participated in a double-blind, placebo-controlled study trial. Children spent two experimental nights in a sleep lab, one stimulation night and one sham night. A declarative learning task (word-pair learning) with a reward condition was used as a primary outcome. Secondary outcome variables were a procedural memory (serial reaction time) and working memory (WM; n-back) task. Encoding of declarative and procedural memory took place in the evening before sleep. After sleep, the retrieval took place followed by the n-back task. Results The stimulation successfully induced SO activity during sleep in children with and without ADHD. After stimulation, only healthy children performed better on high-rewarded memory items (primary outcome). In contrast, there were indications that only children with ADHD benefitted from the stimulation with respect to procedural as well as WM performance (secondary outcome). Conclusions We were able to show that the acoustic closed-loop stimulation can be applied to enhance SO activity in children with and without ADHD. Our data indicate that SO activity during sleep interacts with subsequent memory performance (primary outcome: rewarded declarative memory; secondary outcome: procedural and WM) in children with and without ADHD.
With the increasing availability of online streaming platforms, their large repertoire of shows, and policy to release entire seasons at once, binge-watching (BW)-subsequently watching multiple episodes (Trouleau et al., 2016;Walton-Pattison et al., 2018)-attracts growing theoretical and empirical interest (Schlütz, 2015). BW is a popular and rewarding leisure activity that should not be unnecessarily pathologized (Billieux et al., 2015). However, BW does entail problematic potential as it is linked to negative outcomes such as sleeping
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.