Importance of the field
P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1.
Areas covered in this review
We discuss the mechanisms that control PAK1 activity; its involvement in physiological and pathophysiological processes; the benefits and the drawbacks of the current tools to regulate PAK1 activity; the evidences that point to PAK1 as a therapeutic target; and the likely directions of future research.
What the reader will gain
The reader will gain a better knowledge and understanding of the areas covered in this review.
Take-home message
PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Summary We have investigated the effect of the soybean isoflavone genistein on the growth and differentiation of human melanoma cells. Four human melanoma cell lines, either completely lacking or containing different levels of wild-type p53, were treated with genistein in vitro in culture. It has been found that genistein significantly inhibited cell growth and that the chemosensitivity might depend on cellular p53 content. Specifically, the data suggest that high levels of wild-type p53 expression make cells resistant to genistein's growth-inhibitory action. Further support for this observation came from the stable transfection studies in which p53 transfectants expressing high levels of wild-type p53 became resistant to genistein. With respect to cell differentiation, our study showed that genistein increased melanin content and tyrosinase activity and caused the cells to form dendrite-like structures. Cells lacking p53 responded more than cells with p53 to dendrite-like structure formation. We also observed that genistein-induced differentiation involved an increase in tyrosinase mRNA level; the mechanisms by which genistein increases tyrosinase transcripts remain to be elucidated. Genistein treatment of the melanoma cell lines resulted in cell cycle arrest at G2/M check point and no significant apoptosis was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.