Several limitations have restricted the use of P450 enzymes in synthesis, including the narrow substrate specificity of some P450 isoforms, the need for a redox partner and an expensive cofactor, incompatibility with organic solvents, and poor stability. We previously demonstrated that the natural redox partner and cofactor of the promiscuous P450s 3A4 and 2D6 can be efficiently substituted with some cheap hydrogen peroxide donors or organic peroxides. We report here that P450 2D6 maintains as much as 76% of its activity when used in buffer/organic emulsions. Product formation in biphasic solvent systems is comparable whether the natural redox partner and cofactor are used, or a surrogate. As reported for other enzymes, a correlation is observed between the logP and the suitability of a solvent for enzymatic activity. Moreover, the utility of our system was established by demonstrating the transformation of a novel hydrophobic substrate, not modified by P450 2D6 in the absence of organic solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.