The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial-derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.
Colorectal cancer (CRC) is the second leading cause of cancer worldwide. CRC is still associated with a poor prognosis among patients with advanced disease. On the contrary, due to its slow progression from detectable precancerous lesions, the prognosis for patients with early stages of CRC is encouraging. While most robust methods are invasive and costly, actual patient-friendly screening methods for CRC suffer of lack of sensitivity and specificity. Therefore, the development of sensitive, non-invasive and cost-effective methods for CRC detection and prognosis are necessary for increasing the chances of a cure. Beyond its beneficial functions for the host, increasing evidence suggests that the intestinal microbiota is a key factor associated with carcinogenesis. Many clinical studies have reported a disruption in the gut microbiota balance and an alteration in the faecal metabolome of CRC patients, suggesting the potential use of a microbial-based test as a non-invasive diagnostic and/or prognostic tool for CRC screening. This review aims to discuss the microbial signatures associated with CRC known to date, including dysbiosis and faecal metabolome alterations, and the potential use of microbial variation markers for non-invasive early diagnosis and/or prognostic assessment of CRC and advanced adenomas. We will finally discuss the possible use of these markers as predicators for treatment response and their limitations.
Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.