The authors present the French concept of a mobile neurosurgical unit (MNSU) as used to provide specific support to remote military medicosurgical units deployed in Africa, South America, Central Europe, and Afghanistan. From 2001 to 2009, 15 missions were performed, for 16 patients. All but 3 of these missions (those in Kosovo, French Guyana, and Afghanistan) concerned Africa. Eleven patients were French soldiers, 3 were civilians, and 2 were Djiboutian soldiers. The conditions that MNSUs were requested for included craniocerebral wounds (2 cases), closed head trauma (7 cases), spinal trauma (5 cases), and spontaneous intracranial hemorrhage (2 cases). In 5 of the 16 cases, neurosurgical treatment was provided on site. All French soldiers and 2 civilians were evacuated to France. The MNSU can be deployed for timely treatment when some delay in neurosurgical management is acceptable.
The cerebral venous system is poorly understood, and best appreciated under macroscopic anatomical considerations. We present an anatomical and immunohistochemical studies to better define the morphological characteristics of the junction between the great cerebral vein and the straight sinus. Twenty-five cadaveric specimens from the anatomy laboratory of the University Victor Segalen of Bordeaux were studied. The observation of the venous junctions with the straight sinus was performed under an operating microscope. The smooth muscular actin immunohistochemical staining was performed for 18 veno-sinosal junctions. Five venous junctions were observed using an electron microscope. We observed 3 different anatomic aspects: type 1 was a junction with a small elevation in its floor and a posterior thickening (14 cases); type 2 was a junction with an outgrowth on the floor like a cornice (7 cases); and type 3 was a junction presenting a nodule. Microscopic study of type 1 and 2 junctions showed a positive coloration to orceine attesting the presence of elastic fibers. Immunohistochemistry revealed the presence of smooth muscular actin and S 100 protein attesting the presence of smooth muscular fibers and nervous fibers. We observed in the ultrastructural study, a morphological progression of the endothelium. The venous orifice of the great cerebral vein into the straight sinus could be anatomically assimilated as a true "sphincter." Its function in the regulation of the cerebral blood flow needs further exploration.
This article aims to describe the French concept regarding combat casualty neurosurgical care from the theater of operations to a homeland hospital. French military neurosurgeons are not routinely deployed to all combat zones. As a consequence, general surgeons initially treat neurosurgical wounds. The principle of this medical support is based on damage control. It is aimed at controlling intracranial hypertension spikes when neuromonitoring is lacking in resource-limited settings. Neurosurgical damage control permits a medevac that is as safe as can be expected from a conflict zone to a homeland medical treatment facility. French military neurosurgeons can occasionally be deployed within an airborne team to treat a military casualty or to complete a neurosurgical procedure performed by a general surgeon in theaters of operation. All surgeons regardless of their specialty must know neurosurgical damage control. General surgeons must undergo the required training in order for them to perform this neurosurgical technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.