Cutinase is described as playing various roles in fungal-plant pathogen interactions, such as eliciting host-derived signals, fungal spore attachment and carbon acquisition during saprophytic growth. However, the characteristics of the cutinase genes, their expression in compatible interactions and their roles in pathogenesis have not been reported in Curvularia lunata, an important leaf spot pathogen of maize in China. Therefore, a cutinase gene family analysis could have profound significance. In this study, we identified 13 cutinase genes (ClCUT1 to ClCUT13) in the C. lunata genome. Multiple sequence alignment showed that most fungal cutinase proteins had one highly conserved GYSQG motif and a similar DxVCxG[ST]-[LIVMF](3)-x(3)H motif. Gene structure analyses of the cutinases revealed a complex intron-exon pattern with differences in the position and number of introns and exons. Based on phylogenetic relationship analysis, C. lunata cutinases and 78 known cutinase proteins from other fungi were classified into four groups with subgroups, but the C. lunata cutinases clustered in only three of the four groups. Motif analyses showed that each group of cutinases from C. lunata had a common motif. Real-time PCR indicated that transcript levels of the cutinase genes in a compatible interaction between pathogen and host had varied expression patterns. Interestingly, the transcript levels of ClCUT7 gradually increased during early pathogenesis with the most significant up-regulation at 3 h post-inoculation. When ClCUT7 was deleted, pathogenicity of the mutant decreased on unwounded maize (Zea mays) leaves. On wounded maize leaves, however, the mutant caused symptoms similar to the wild-type strain. Moreover, the ClCUT7 mutant had an approximately 10 % reduction in growth rate when cutin was the sole carbon source. In conclusion, we identified and characterized the cutinase family genes of C. lunata, analyzed their expression patterns in a compatible host-pathogen interaction, and explored the role of ClCUT7 in pathogenicity. This work will increase our understanding of cutinase genes in other fungal-plant pathogens.
The full length cDNA of the Brn1 was first cloned, and then expression of the Brn1 was analyzed and the function was identified by silencing technology. Results show that the full length cDNA of the C. lunata Brn1 gene contains 1001 base pairs and an 801 bp open reading frame encoding 267 amino acids. Semi-quantitative PCR analysis shows that the expression of Brn1 at 96 h is significantly higher than at 24 and 72 h (p<0.05) in both the highly virulent isolate CX-3 and the weakly virulent isolate DD60. Brn1-silenced transformants were light brown in culture filtrate, and have significantly reduced toxin production relative to the wild-type. These results imply that Brn1 gene in C. lunata is not only involved in 1,8-dihydroxynaphthalene melanin synthesis, but is also relatively associated with toxin biosynthesis of the pathogen.
The use of synthetic fungicide needs to be gradually reduced because of its adverse effect on human health and the environment. An integrated approach combining fungicides with biological control agents (BCAs) can be used to reduce the fungicide doses, thereby minimizing the risks associated with chemical fungicides. In this study, the combined application of a BCA Trichoderma and a fungicide hymexazol was used to manage the cowpea wilt disease caused by Fusarium oxysporum. The Trichoderma SC012 strain, which is resistant to hymexazol, was screened out and identified as T. asperellum. T. asperellum SC012 showed hyperparasitism to F. oxysporum and could penetrate and encircle the hyphae of pathogen on a medium amended or not with hymexazol. When combined with hymexazol, the population density in the rhizosphere soil of cowpea showed no significant difference compared with the treatment Trichoderma used alone. When the concentration of T. asperellum SC012 or hymexazol was halved, their combined application could control cowpea wilt disease more effectively than their individual use. The findings showed that the combination of Trichoderma and hymexazol could reduce the use of chemical fungicide, which is eco-friendly and may be an important part of integrated control of Fusarium wilt in cowpea.
In order to explore the molecular mechanisms of virulence and genetic variance of Curvularia lunata in maize, an ATMT (Agrobacterium tumefaciensmediated transformation) system was established in order to create a wide range of insertional transformants of C. lunata. Our results showed that the germinating conidia were the ideal starting material for transformation. Based on our optimised transformation condition, the transformation efficiency of C. lunata with T-DNA was improved greatly, and the average transformation frequency was as high as 84±5 transformants per 1× 10 6 germlings. Southern blotting results of 39 randomly-selected transformants showed a unique hybridisation pattern and predominant single-copy insertions. An ATMT library containing approximate 3000 transformants was generated, and four types of transformants were screened in terms of growth rate, sporulation, mycelial pigmentation, and toxin production in vitro. This library will be used to identify genes involved in the virulence of the pathogen.
Deep sequencing of small RNAs is a useful tool to identify novel small RNAs that may be involved in fungal growth and pathogenesis. In this study, we used HiSeq deep sequencing to identify 747,487 unique small RNAs from Curvularia lunata. Among these small RNAs were 1012 microRNA-like RNAs (milRNAs), which are similar to other known microRNAs, and 48 potential novel milRNAs without homologs in other organisms have been identified using the miRBase© database. We used quantitative PCR to analyze the expression of four of these milRNAs from C. lunata at different developmental stages. The analysis revealed several changes associated with germinating conidia and mycelial growth, suggesting that these milRNAs may play a role in pathogen infection and mycelial growth. A total of 8334 target mRNAs for the 1012 milRNAs that were identified, and 256 target mRNAs for the 48 novel milRNAs were predicted by computational analysis. These target mRNAs of milRNAs were also performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our knowledge, this study is the first report of C. lunata's milRNA profiles. This information will provide a better understanding of pathogen development and infection mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.