Very fast transient overvoltage (VFTO) generated by an operating disconnector is one of the main reasons for electromagnetic disturbance in gas-insulated switchgear (GIS) substations. Generally, the amplitude of VFTO can be used as one of the references for the insulation design of GIS primary electric power equipment, so it is necessary to obtain its accurate amplitude. In this study, a new VFTO measuring sensor is developed and its measurement performance is demonstrated through hundreds of operations by a disconnector in a 220 kV GIS test circuit. The validation shows that the low cut-off frequency of the new VFTO measuring sensor has been greatly expanded to 0.01 mHz, which is improved by about 50% compared with the old sensor. The measurement accuracy of amplitude of VFTO micro-pulse improves greatly by about 80% compared with the old one. Thus, the new VFTO measuring sensor can fully meet the measurement needs of trapped charge voltage, power frequency voltage, and high-frequency transient voltage in VFTO waveform. It can be used to provide more accurate data support for insulation design of GIS primary power electric equipment in extra-high voltage (EHV) and ultra-high voltage (UHV) GIS substations.
The switching operation of gas insulated switchgear (GIS) disconnector will produce multiple random spark discharges between the gas gaps of the disconnector. Each spark discharge can be affected by various random factors, such as trapped charge on the load side, the initial operating phase, gap distance and operating speed of the disconnector, leading to dispersion characteristics. At present, some studies have mentioned this dispersion, but its impact is still unclear due to the lack of experimental data, resulting in a deviation between the simulation results and the measured results. In this study, thousands of switching operations were carried out based on the 1100 kV full‐scale GIS circuit in Wuhan ultra‐high voltage alternating current Test Base. The maximal information coefficient analysis, linear regression fitting and other statistical methods were used to discuss the dispersion characteristics of very fast transient overvoltage (VFTO) and transient enclosure voltage (TEV) from large‐scale experimental data. The results show that the dispersion of VFTO and TEV in amplitude aspects both increase gradually as the breakdown voltage increases, with the maximum difference of five times of TEV amplitude at normalised breakdown voltage. In terms of frequency characteristics, the dispersion of different frequency components in TEV is always greater than that of VFTO, especially for the high‐frequency components. Moreover, by comparing the frequency characteristics of TEV at different positions, we notice that the dispersion is almost independent of the spatial position but only determined by the randomness of spark discharges. These discoveries reveal the importance of the dispersion in switching transients and make up for the lack of theoretical understanding of the correlation among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.