Microarray analysis promises to detect variations in gene expressions, and changes in the transcription rates of an entire genome in vivo. Microarray gene expression profiles indicate the relative abundance of mRNA corresponding to the genes. The selection of relevant genes from microarray data poses a formidable challenge to researchers due to the high-dimensionality of features, multiclass categories being involved, and the usually small sample size. A classification process is often employed which decreases the dimensionality of the microarray data. In order to correctly analyze microarray data, the goal is to find an optimal subset of features (genes) which adequately represents the original set of features. A hybrid method of binary particle swarm optimization (BPSO) and a combat genetic algorithm (CGA) is to perform the microarray data selection. The K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) served as a classifier. The proposed BPSO-CGA approach is compared to ten microarray data sets from the literature. The experimental results indicate that the proposed method not only effectively reduce the number of genes expression level, but also achieves a low classification error rate.
Pattern recognition techniques suffer from a well-known curse, the dimensionality problem. The microarray data classification problem is a classical complex pattern recognition problem. Selecting relevant genes from microarray data poses a formidable challenge to researchers due to the high-dimensionality of features, multiclass categories being involved, and the usually small sample size. The goal of feature (gene) selection is to select those subsets of differentially expressed genes that are potentially relevant for distinguishing the sample classes. In this paper, information gain and chaotic genetic algorithm are proposed for the selection of relevant genes, and a K-nearest neighbor with the leave-one-out crossvalidation method serves as a classifier. The chaotic genetic algorithm is modified by using the chaotic mutation operator to increase the population diversity. The enhanced population diversity expands the GA's search ability. The proposed approach is tested on 10 microarray data sets from the literature. The experimental results show that the proposed method not only effectively reduced the number of gene expression levels, but also achieved lower classification error rates than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.