A statistical downscaling method (SDSM) was evaluated by simultaneously downscaling air temperature, evaporation, and precipitation in Haihe River basin, China. The data used for evaluation were large-scale atmospheric data encompassing daily NCEP/NCAR reanalysis data and the daily mean climate model results for scenarios A2 and B2 of the HadCM3 model. Selected as climate variables for downscaling were measured daily mean air temperature, pan evaporation, and precipitation data from 11 weather stations in the Haihe River basin. The results obtained from SDSM showed that: (1) the pattern of change in and numerical values of the climate variables can be reasonably simulated, with the coefficients of determination between observed and downscaled mean temperature, pan evaporation, and precipitation being 99%, 93%, and 73%, respectively; (2) systematic errors existed in simulating extreme events, but the results were acceptable for practical applications; and (3) the mean air temperature would increase by about 0.7°C during 2011~2040; the total annual precipitation would decrease by about 7% in A2 scenario but increase by about 4% in B2 scenario; and there were no apparent changes in pan evaporation. It was concluded that in the next 30 years, climate would be warmer and drier, extreme events could be more intense, and autumn might be the most distinct season among all the changes.
Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.
Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.