Background & aims: Body composition analysis on CT images is a valuable tool for sarcopenia assessment. We aimed to develop and validate a deep neural network applicable to whole-body CT images of PET-CT scan for the automatic volumetric segmentation of body composition. Methods: For model development, one hundred whole-body or torso 18 F-fluorodeoxyglucose PETeCT scans of 100 patients were retrospectively included. Two radiologists semi-automatically labeled the following seven body components in every CT image slice, providing a total of 46,967 image slices from the 100 scans for training the 3D U-Net (training, 39,268 slices; tuning, 3116 slices; internal validation, 4583 slices): skin, bone, muscle, abdominal visceral fat, subcutaneous fat, internal organs with vessels, and central nervous system. The segmentation accuracy was assessed using reference masks from three external datasets: two Korean centers (4668 and 4796 image slices from 20 CT scans, each) and a French public dataset (3763 image slices from 24 CT scans). The 3D U-Net-driven values were clinically validated using bioelectrical impedance analysis (BIA) and by assessing the model's diagnostic performance for sarcopenia in a community-based elderly cohort (n ¼ 522). Results: The 3D U-Net achieved accurate body composition segmentation with an average dice similarity coefficient of 96.5%e98.9% for all masks and 92.3%e99.3% for muscle, abdominal visceral fat, and subcutaneous fat in the validation datasets. The 3D U-Net-derived torso volume of skeletal muscle and fat tissue and the average area of those tissues in the waist were correlated with BIA-derived appendicular lean mass (correlation coefficients: 0.71 and 0.72, each) and fat mass (correlation coefficients: 0.95 and 0.93, each). The 3D U-Net-derived average areas of skeletal muscle and fat tissue in the waist were independently associated with sarcopenia (P < .001, each) with adjustment for age and sex, providing an area under the curve of 0.858 (95% CI, 0.815 to 0.901).
ObjectiveTo investigate the usefulness of computed tomography (CT) texture analysis (CTTA) in estimating histologic tumor grade and in predicting disease-free survival (DFS) after surgical resection in patients with hepatocellular carcinoma (HCC).Materials and MethodsEighty-one patients with a single HCC who had undergone quadriphasic liver CT followed by surgical resection were enrolled. Texture analysis of tumors on preoperative CT images was performed using commercially available software. The mean, mean of positive pixels (MPP), entropy, kurtosis, skewness, and standard deviation (SD) of the pixel distribution histogram were derived with and without filtration. The texture features were then compared between groups classified according to histologic grade. Kaplan-Meier and Cox proportional hazards analyses were performed to determine the relationship between texture features and DFS.ResultsSD and MPP quantified from fine to coarse textures on arterial-phase CT images showed significant positive associations with the histologic grade of HCC (p < 0.05). Kaplan-Meier analysis identified most CT texture features across the different filters from fine to coarse texture scales as significant univariate markers of DFS. Cox proportional hazards analysis identified skewness on arterial-phase images (fine texture scale, spatial scaling factor [SSF] 2.0, p < 0.001; medium texture scale, SSF 3.0, p < 0.001), tumor size (p = 0.001), microscopic vascular invasion (p = 0.034), rim arterial enhancement (p = 0.024), and peritumoral parenchymal enhancement (p = 0.010) as independent predictors of DFS.ConclusionCTTA was demonstrated to provide texture features significantly correlated with higher tumor grade as well as predictive markers of DFS after surgical resection of HCCs in addition to other valuable imaging and clinico-pathologic parameters.
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.