Conducting hydrogels have attracted much attention for the emerging field of hydrogel bioelectronics, especially poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, because of their great biocompatibility and stability. However, the electrical conductivities of hydrogels are often lower than 1 S cm−1 which are not suitable for digital circuits or applications in bioelectronics. Introducing conductive inorganic fillers into the hydrogels can improve their electrical conductivities. However, it may lead to compromises in compliance, biocompatibility, deformability, biodegradability, etc. Herein, a series of highly conductive ionic liquid (IL) doped PEDOT:PSS hydrogels without any conductive fillers is reported. These hydrogels exhibit high conductivities up to ≈305 S cm−1, which is ≈8 times higher than the record of polymeric hydrogels without conductive fillers in literature. The high electrical conductivity results in enhanced areal thermoelectric output power for hydrogel‐based thermoelectric devices, and high specific electromagnetic interference (EMI) shielding efficiency which is about an order in magnitude higher than that of state‐of‐the‐art conductive hydrogels in literature. Furthermore, these stretchable (strain >30%) hydrogels exhibit fast self‐healing, and shape/size‐tunable properties, which are desirable for hydrogel bioelectronics and wearable organic devices. The results indicate that these highly conductive hydrogels are promising in applications such as sensing, thermoelectrics, EMI shielding, etc.
Emerging evidence shows that the coronavirus disease 2019 (COVID-19) pandemic is negatively affecting mental health around the globe. Interventions to alleviate the psychological impact of the pandemic are urgently needed. Whether mindfulness practice may protect against the harmful emotional effects of a pandemic crisis remains hitherto unknown. We investigated the influence of mindfulness training on mental health during the COVID-19 outbreak in China. We hypothesized that mindfulness practitioners might manifest less pandemic-related distress, depression, anxiety, and stress than non-practitioners and that more frequent practice would be associated with an improvement in mental health during the pandemic. Therefore, we assessed pandemic-related distress and symptoms of depression, anxiety, and stress, as well as the frequency of meditation practice at the peak of new infections (Feb 4–5; N = 673) and three weeks later (Feb 29–30; N = 521) in mindfulness practitioners via online questionnaires. Self-reported symptoms were also collected from non-practitioners at peak time only (N = 1550). We found lower scores of pandemic-related distress in mindfulness practitioners compared to non-practitioners. In general, older participants showed fewer symptoms of depression and anxiety. In younger practitioners, pandemic-related distress decreased from peak to follow-up. Importantly, increased mindfulness training during the preceding two weeks was associated with lower scores of depression and anxiety at both assessments. Likewise, practice frequency predicted individual improvement in scores of depression, anxiety, and stress at follow-up. Our results indicate that mindfulness meditation might be a viable low-cost intervention to mitigate the psychological impact of the COVID-19 crisis and future pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.