Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
The progress of charge manipulation in semiconductor-based nanoscale devices opened up a novel route to realise a flying qubit with a single electron. In the present review, we introduce the concept of these electron flying qubits, discuss their most promising realisations and show how numerical simulations are applicable to accelerate experimental development cycles. Addressing the technological challenges of flying qubits that are currently faced by academia and quantum enterprises, we underline the relevance of interdisciplinary cooperation to move emerging quantum industry forward. The review consists of two main sections:Pathways towards the electron flying qubit: We address three routes of single-electron transport in GaAs-based devices focusing on surface acoustic waves, hot-electron emission from quantum dot pumps and Levitons. For each approach, we discuss latest experimental results and point out how numerical simulations facilitate engineering the electron flying qubit.Numerical modelling of quantum devices: We review the full stack of numerical simulations needed for fabrication of the flying qubits. Choosing appropriate models, examples of basic quantum mechanical simulations are explained in detail. We discuss applications of open-source (KWANT) and the commercial (nextnano) platforms for modelling the flying qubits. The discussion points out the large relevance of software tools to design quantum devices tailored for efficient operation.
Surface acoustic waves (SAWs) have large potential to realize quantum-optics-like experiments with single flying electrons employing their spin or charge degree of freedom. For such quantum applications, highly efficient trapping of the electron in a specific moving quantum dot (QD) of a SAW train plays a key role. Probabilistic transport over multiple moving minima would cause uncertainty in synchronization that is detrimental for coherence of entangled flying electrons and in-flight quantum operations. It is thus of central importance to identify the device parameters enabling electron transport within a single SAW minimum. A detailed experimental investigation of this aspect is so far missing. Here, we fill this gap by demonstrating time-of-flight measurements for a single electron that is transported via a SAW train between distant stationary QDs. Our measurements reveal the in-flight distribution of the electron within the moving acousto-electric quantum dots of the SAW train. Increasing the acousto-electric amplitude, we observe the threshold necessary to confine the flying electron at a specific, deliberately chosen SAW minimum. Investigating the effect of a barrier along the transport channel, we also benchmark the robustness of SAW-driven electron transport against stationary potential variations. Our results pave the way for highly controlled transport of electron qubits in a SAW-driven platform for quantum experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.