SummaryBackgroundKCNJ11 mutations cause permanent neonatal diabetes through pancreatic ATP-sensitive potassium channel activation. 90% of patients successfully transfer from insulin to oral sulfonylureas with excellent initial glycaemic control; however, whether this control is maintained in the long term is unclear. Sulfonylurea failure is seen in about 44% of people with type 2 diabetes after 5 years of treatment. Therefore, we did a 10-year multicentre follow-up study of a large international cohort of patients with KCNJ11 permanent neonatal diabetes to address the key questions relating to long-term efficacy and safety of sulfonylureas in these patients.MethodsIn this multicentre, international cohort study, all patients diagnosed with KCNJ11 permanent neonatal diabetes at five laboratories in Exeter (UK), Rome (Italy), Bergen (Norway), Paris (France), and Krakow (Poland), who transferred from insulin to oral sulfonylureas before Nov 30, 2006, were eligible for inclusion. Clinicians collected clinical characteristics and annual data relating to glycaemic control, sulfonylurea dose, severe hypoglycaemia, side-effects, diabetes complications, and growth. The main outcomes of interest were sulfonylurea failure, defined as permanent reintroduction of daily insulin, and metabolic control, specifically HbA1c and sulfonylurea dose. Neurological features associated with KCNJ11 permanent neonatal diabetes were also assessed. This study is registered with ClinicalTrials.gov, number NCT02624817.Findings90 patients were identified as being eligible for inclusion and 81 were enrolled in the study and provided long-term (>5·5 years cut-off) outcome data. Median follow-up duration for the whole cohort was 10·2 years (IQR 9·3–10·8). At most recent follow-up (between Dec 1, 2012, and Oct 4, 2016), 75 (93%) of 81 participants remained on sulfonylurea therapy alone. Excellent glycaemic control was maintained for patients for whom we had paired data on HbA1c and sulfonylurea at all time points (ie, pre-transfer [for HbA1c], year 1, and most recent follow-up; n=64)—median HbA1c was 8·1% (IQR 7·2–9·2; 65·0 mmol/mol [55·2–77·1]) before transfer to sulfonylureas, 5·9% (5·4–6·5; 41·0 mmol/mol [35·5–47·5]; p<0·0001 vs pre-transfer) at 1 year, and 6·4% (5·9–7·3; 46·4 mmol/mol [41·0–56·3]; p<0·0001 vs year 1) at most recent follow-up (median 10·3 years [IQR 9·2–10·9]). In the same patients, median sulfonylurea dose at 1 year was 0·30 mg/kg per day (0·14–0·53) and at most recent follow-up visit was 0·23 mg/kg per day (0·12–0·41; p=0·03). No reports of severe hypoglycaemia were recorded in 809 patient-years of follow-up for the whole cohort (n=81). 11 (14%) patients reported mild, transient side-effects, but did not need to stop sulfonylurea therapy. Seven (9%) patients had microvascular complications; these patients had been taking insulin longer than those without complications (median age at transfer to sulfonylureas 20·5 years [IQR 10·5–24·0] vs 4·1 years [1·3–10·2]; p=0·0005). Initial improvement was noted following transfer to sulfo...
PNDM frequency in Slovakia is much higher (one in 215,417 live births) than previously suggested from international estimates (about one in 800,000). We identified one ABCC8 and four KCNJ11 mutation carriers, of whom four were successfully transferred to SU, dramatically improving their diabetes control and quality of life.
A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.