Coronavirus disease 2019 (COVID-19) antiviral response in a pan-tumor immune monitoring (CAPTURE) (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable titers of neutralizing antibodies (NAbT) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) versus wild-type (WT) SARS-CoV-2. Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT than those with solid cancers against both SARS-CoV-2 WT and VOC. By comparison with individuals without cancer, patients with hematological, but not solid, malignancies had reduced neutralizing antibody (NAb) responses. Seroconversion showed poor concordance with NAbT against VOC. Previous SARS-CoV-2 infection boosted the NAb response including against VOC, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T cell responses were detected in 80% of patients and were comparable between vaccines or cancer types. Our results have implications for the management of patients with cancer during the ongoing COVID-19 pandemic.
Circulating tumour DNA (ctDNA) has potential applications in gastric cancer (GC) with respect to screening, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision making and therapeutic monitoring. It can provide a less invasive and convenient method to capture the tumoural genomic landscape compared to tissue-based next-generation DNA sequencing (NGS). In addition, ctDNA can potentially overcome the challenges of tumour heterogeneity seen with tissue-based NGS. Although the evidence for ctDNA in GC is evolving, its potential utility is far reaching and may shape the management of this disease in the future. This article will review the current and future applications of ctDNA in GC.
Gastrointestinal (GI) cancers are among the most common and lethal solid tumors worldwide. Unlike in malignancies such as lung, renal and skin cancers, the activity of immunotherapeutic agents in GI cancers has, on the whole, been much less remarkable and do not apply to the majority. Furthermore, while incremental progress has been made and approvals for use of immune checkpoint inhibitors (ICIs) in specific subsets of patients with GI cancers are coming through, in a population of ‘all-comers’, it is frequently unclear as to who may benefit most due to the relative lack of reliable predictive biomarkers. For most patients with newly diagnosed advanced or metastatic GI cancer, the mainstay of treatment still involves chemotherapy and/or a targeted agent however, beyond the second-line this paradigm confers minimal patient benefit. Thus, current research efforts are concentrating on broadening the applicability of ICIs in GI cancers by combining them with agents designed to beneficially remodel the tumor microenvironment (TME) for more effective anti-cancer immunity with intention of improving patient outcomes. This review will discuss the currently approved ICIs available for the treatment of GI cancers, the strategies underway focusing on combining ICIs with agents that target the TME and touch on recent progress toward identification of predictors of sensitivity to immune checkpoint blockade in GI cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.