<span>The use <span>of medical imaging technology aids clinicians in recognizing and assessing patient problems, as well as improving treatment procedures. However, while conducting complex procedures such as the excision of brain tumors, the knowledge and biological research gathered from 2D images are insufficient. Converting 2D images to 3D images may assist doctors in determining the size, shape, and sharp area of tumor cells in the brain. The feasibility of translating 2D medical image data to a 3D model is described in this work. A suggested framework for predicting the size, shape, and location of a brain tumor using a minimized genetic machine learning method, and then converting the tumor information into 3D images using a depth map estimation approach after detecting the tumor information. When the tumor is located, the left and right view data are combined to form a 3D magnetic resonance imaging reconstruction. We used mixed reality methods to minimize file size while preserving the greatest quality of the model during a brain surgical operation.</span></span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.