ABSTRACT. New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 cal kyr BP. Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific 14 C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the 14 C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).
Isotopically dated corals from the central New Hebrides and New Georgia Island Group, Solomon Islands, indicate that both forearcs underwent rapid late Quaternary subsidence that was abruptly replaced by hundreds of meters of uplift at rates up to ∼8 mm/yr, while total plate convergence was only a few kilometers. Two mechanisms that might account for these rapid reversals in vertical motion include (1) a “displacement” mechanism in which the forearc is displaced upward by the volume of an object passing beneath on the subducting plate (as the object moves deeper and vacates the base of the forearc, the forearc subsides to near its original position) and (2) a “crustal shortening” mechanism in which the forearc thickens and uplifts because of horizontal shortening when a large object impinges on the forearc and abruptly increases interplate coupling on the shallow end of the main thrust zone. Rapid subsidence follows when the impinging object is broken or otherwise decoupled, shallow interplate coupling becomes weak, and the uplifted forearc extends and subsides. The displacement mechanism surely plays a role on timescales over which plates converge tens of kilometers, but it fails to explain the geographic pattern, short time frame, and abruptness of the change from subsidence to uplift that we observe. The crustal shortening mechanism is preferred because it allows the observed abrupt uplift when an object impinges on a forearc and causes locking of a shallow segment of the interplate thrust zone.
We calibrated portions of the radiocarbon time scale with combined 230Th, 231Pa, 14C measurements of corals collected from Espiritu Santo, Vanuatu and the Huon Peninsula, Papua New Guinea. The new data map 14C variations ranging from the current limit of the tree-ring calibration [11,900 calendar years before present (cal BP), Kromer and Spurk 1998, now updated to 12,400 cal B P, see Kromer et al., this issue], to the 14C-dating limit of 50,000 cal BP, with detailed structure between 14 to 16 cal kyr BP and 19 to 24 cal kyr BP. Samples older than 25,000 cal BP were analyzed with high-precision 231Pa dating methods (Pickett et al. 1994; Edwards et al. 1997) as a rigorous second check on the accuracy of the 230Th ages. These are the first coral calibration data to receive this additional check, adding confidence to the age data forming the older portion of the calibration. Our results, in general, show that the offset between calibrated and 14C ages generally increases with age until about 28,000 cal BP, when the recorded 14C age is nearly 6800 yr too young. The gap between ages before this time is less; at 50,000 cal BP, the recorded 14C age is 4600 yr too young. Two major 14C-age plateaus result from a 130 drop in Δ14C between 14–15 cal kyr BP and a 700 drop in Δ14C between 22–25 cal kyr BP. In addition, a large atmospheric Δ14C excursion to values over 1000 occurs at 28 cal kyr BP. Between 20 and 10 cal kyr BP, a component of atmospheric Δ14C anti-correlates with Greenland ice δ18O, indicating that some portion of the variability in atmospheric Δ14C is related to climate change, most likely through climate-related changes in the carbon cycle. Furthermore, the 28-kyr excursion occurs at about the time of significant climate shifts. Taken as a whole, our data indicate that in addition to a terrestrial magnetic field, factors related to climate change have affected the history of atmospheric 14C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.