Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.
We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence.
IMPORTANCE The exome molecular autopsy may elucidate a pathogenic substrate for sudden unexplained death.OBJECTIVE To investigate the underlying cause of multiple sudden deaths in young individuals and sudden cardiac arrests that occurred in 2 large Amish families. DESIGN, SETTING, AND PARTICIPANTSTwo large extended Amish families with multiple sudden deaths in young individuals and sudden cardiac arrests were included in the study. A recessive inheritance pattern was suggested based on an extended family history of sudden deaths in young individuals and sudden cardiac arrests, despite unaffected parents. A family with exercise-associated sudden deaths in young individuals occurring in 4 siblings was referred for postmortem genetic testing using an exome molecular autopsy. Copy number variant (CNV) analysis was performed on exome data using PatternCNV. Chromosomal microarray validated the CNV identified. The nucleotide break points of the CNV were determined by mate-pair sequencing. Samples were collected for this study between November 2004 and June 2019. MAIN OUTCOMES AND MEASURESThe identification of an underlying genetic cause for sudden deaths in young individuals and sudden cardiac arrests consistent with the recessive inheritance pattern observed in the families. RESULTSA homozygous duplication, involving approximately 26 000 base pairs of intergenic sequence, RYR2's 5′UTR/promoter region, and exons 1 through 4 of RYR2, was identified in all 4 siblings of a family. Multiple distantly related relatives experiencing exertion-related sudden cardiac arrest also had the identical RYR2 homozygous duplication. A second, unrelated family with multiple exertion-related sudden deaths and sudden cardiac arrests in young individuals, with the same homozygous duplication, was identified. Several living, homozygous duplication-positive symptomatic patients from both families had nondiagnostic cardiologic testing, with only occasional ventricular ectopy occurring during exercise stress tests. CONCLUSIONS AND RELEVANCEIn this analysis, we identified a novel, highly penetrant, homozygous multiexon duplication in RYR2 among Amish youths with exertion-related sudden death and sudden cardiac arrest but without an overt phenotype that is distinct from RYR2-mediated catecholaminergic polymorphic ventricular tachycardia. Considering that no cardiac tests reliably identify at-risk individuals and given the high rate of consanguinity in Amish families, identification of unaffected heterozygous carriers may provide potentially lifesaving premarital counseling and reproductive planning.
Background: Methionine adenosyltransferase I/III (MATI/III) deficiency is the most common genetic cause of persistent isolated hypermethioninemia.Patients and Methods: This is a retrospective data analysis of 62 newborns with elevated methionine detected by newborn screening between January 2000 and June 2013. The clinical, biochemical, and molecular findings of a subset of these children with MAT1A mutations associated with MATI/III deficiency are presented.Results: Of the 62 newborns with elevated methionine, 12 were identified as having classical homocystinuria; 37 were false-positives; and 13 were found to have isolated persistent hypermethioninemia in the absence of biochemical markers of homocystinuria, abnormal liver function studies, or other causes of elevated methionine. These 13 individuals underwent genetic testing for changes in the MAT1A gene, associated with MATI/III deficiency. Three of 13 were found to have the common autosomal dominant R264H mutation, one was found to be a compound heterozygote for two novel pathogenic mutations, and three were found to be heterozygotes for previously reported mutations shown to cause autosomal recessive MATI/III deficiency when present in homozygous or a compound heterozygous configuration. The remaining six patients had variants of unknown clinical significance or novel mutations. For the majority of individuals, methionine persisted above the normal range but trended downward over time. None of these 13 individuals was started on a lowmethionine diet, and all have age-appropriate growth and development.Conclusion: These cases show that individuals with even single changes in the MAT1A gene may have elevations in methionine identified by newborn screening, which may persist for months after birth without any clinical consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.