Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.
Cancer is one of the major causes of death worldwide and chemotherapy is a major therapeutic approach for the treatment which may be used alone or combined with other forms of therapy. However, conventional chemotherapy suffers lack of aqueous solubility, lack of selectivity and multidrug resistance. Nanotherapeutics is rapidly progressing aimed to solve several limitations of conventional drug delivery systems. Nonspecific target of cancer chemotherapy leads to damage rapidly proliferating normal cells and can be significantly reduced through folate and transferrin mediated nanotherapeutics which are aimed to target cancerous cells. Multidrug resistance is challenge in cancer chemotherapy which can be significantly reversed by solid lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, nanoparticulated chemosensitizer, nanoparticluated poloxamer and magnetic nanoparticles. Hydrophobic nature of chemotherapeutics leads to poor aqueous solubility and low bioavailability which can be overcome by nanocrystals, albumin based nanoparticles, liposomal formulation, polymeric micelles, cyclodextrin and chitosan based nanoparticles. This review focuses the role of nanotherapeutics to overcome lack of selectivity, multidrug resistance and lack of aqueous solubility of conventional cancer chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.