In this paper, we have reported on biological synthesis of nano-sized silver and its antibacterial activity against human pathogens. The nanoparticles of silver were formed by the reduction of silver nitrate to aqueous silver metal ions during exposure to the extract of marine seaweed Sargassum wightii. The optical properties of the obtained silver nanoparticles were characterized using UV-visible absorption and room temperature photoluminescence. The X-ray diffraction results reveal that the synthesized silver nanoparticles are in the cubic phase. The existence of functional groups was identified using Fourier transform infrared spectroscopy. The morphology and size of the synthesized particles were studied with atomic force microscope and highresolution transmission electron microscope measurements. The synthesized nanoparticles have an effective antibacterial activity against S. aureus, K. pneumoniae, and S. typhi.
In the present report, bio-reduction of silver nitrate into silver nanoparticles using the leaf extract of Nelumbo nucifera is explained. The synthesized nanoparticles exhibited surface Plasmon resonance at 410 nm. The crystalline nature of the biosynthesized silver nanoparticles was confirmed from the X-ray diffraction pattern. The functional groups responsible for bio-reduction of silver nitrate into silver were analyzed by Fourier transform infrared spectroscopy and confirmed by X-ray photoelectron spectrum. Field emission transmission electron microscope micrographs showed the formation of well-separated silver nanoparticles of size in the range of 30-40 nm. The result of dynamic light scattering also confirms the mono-dispersed silver nanoparticles with average size of 35 nm. The synthesized nanoparticles exhibited excellent antibacterial activity against the Gram-positive bacteria B. subtilis. Keywords Nelumbo nucifera Á Bio-reduction Á Silver nanoparticles Á Surface plasmon resonance Á Gram-positive Materials and methods Sample collection Fresh leaves of Nelumbo nucifera from the family of nelumbonaceae were collected from Natrajor temple pond & N.
Structural health monitoring of existing infrastructure is currently an active field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical structures. Change of static deflection as the indicator of damage is the simplest tool in a structural health monitoring scenario of bridges that is least exploited in damage identification strategies. In this paper, some simple and elegant equations based on loss of symmetry due to damage are derived and presented for identification of damage in a bridge girder modeled as a simply supported beam using changes in static deflections and dynamic parameters. A single contiguous and distributed damage, typical of reinforced or prestressed concrete structures, is assumed for the structure. The methodology is extended for a base-line-free as well as base-line-inclusive measurement. Measurement strategy involves application of loads only at two symmetric points one at a time and deflection measurements at those symmetric points as well as at the midspan of the beam. A laboratory-based experiment is used to validate the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.