Excited states of free-base porphyrin isomers, porphycene (Pc), corrphycene (Cor), and hemiporphycene (hPc), were studied by the Symmetry-Adapted Cluster (SAC)/SAC-Configuration Interaction (CI) method. The absorption peaks of the porphyrin isomers were assigned on the basis of the SAC-CI spectra. The X, Y, X', and Y' bands of the porphyrin isomers, which have weak intensities, are identified. The differences in the Q-band absorptions among the isomers were clearly explained by the four-orbital model. In Cor and hPc, the wave function of the B-band corresponds to the mixture of the four-orbital excitations and the optically forbidden excitation of free-base porphin (P), due to the molecular symmetry lowering in the isomers. The B-band character is described by the five-orbital model in Pc and the six-orbital model in Cor and hPc. Two tetrazaporphycenes and two ring-extended (dibenzo) porphycenes were designed, and the Q-band transition moment was successfully controlled. These examples show that the control of the four-orbital energy levels is the guiding principle for pigment design in porphyrin compounds.
Blazars are highly variable active galactic nuclei which emit radiation at all wavelengths from radio to gamma-rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition and variability are still debated.We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between Jul. 2008 and Dec. 2014 to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in pc-scale relativistic jets between different types blazars (FSRQs vs. BL Lacs), and consequently between different types of radio galaxies (FR Is vs. FR IIs).
We present optical and near-infrared observations of the nearby Type Iax supernova (SN) 2014dt from 14 to 410 days after the maximum light. The velocities of the iron absorption lines in the early phase indicated that SN 2014dt showed slower expansion than the well-observed Type Iax SNe 2002cx, 2005hk and 2012Z. In the late phase, the evolution of the light curve and that of the spectra were considerably slower. The spectral energy distribution kept roughly the same shape after ∼ 100 days, and the bolometric light curve flattened during the same period. These observations suggest the existence of an optically thick component that almost fully trapped the γ-ray energy from 56 Co decay. These findings are consistent with the predictions of the weak deflagration model, leaving a bound white dwarf remnant after the explosion.
We presented optical and near-infrared multi-band linear polarimetry of the highly reddened Type Ia SN 2014J appeared in M82. SN 2014J exhibits large polarization at shorter wavelengths, e.g., 4.8% in B band, and the polarization decreases rapidly at longer wavelengths, with the position angle of the polarization remaining at approximately 40 • over the observed wavelength range. These polarimetric properties suggest that the observed polarization is likely to be caused predominantly by the interstellar dust within M82. Further analysis shows that the polarization peaks at a wavelengths much shorter than those obtained for the Galactic dust. The wavelength dependence of the polarization can be better described by an inverse power law rather than by Serkowski law for Galactic interstellar polarization. These suggests that the nature of the dust in M82 may be different from that in our Galaxy, with polarizing dust grains having a mean radius of < 0.1 µm .
Here, we developed polymeric microfluidic devices for the isolation of circulating tumor cells. The devices, with more than 30,000 microposts in the channel, were produced successfully by a UV light-curing process lasting 3 min. The device surface was coated with anti-epithelial cell adhesion molecule antibody by just contacting the antibody solution, and a flow system including the device was established to send a cell suspension through it. We carried out flow tests for evaluation of the device's ability to capture tumor cells using an esophageal cancer cell line, KYSE220, dispersed in phosphate-buffered saline or mononuclear cell separation from whole blood. After the suspension flowed through the chip, many cells were seen to be captured on the microposts coated with the antibody, whereas there were few cells in the device without the antibody. Owing to the transparency of the device, we could observe the intact and the stained cells captured on the microposts by transmitted light microscopy and phase contrast microscopy, in addition to fluorescent microscopy, which required fluorescence labeling. Cell capture efficiencies (i.e., recovery rates of the flowing cancer cells by capture with the microfluidic device) were measured. The resulting values were 0.88 and 0.95 for cell suspension in phosphate-buffered saline, and 0.85 for the suspension in the mononuclear cell separation, suggesting the sufficiency of this device for the isolation of circulating tumor cells. Therefore, our device may be useful for research and treatments that rely on investigation of circulating tumor cells in the blood of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.